Using a Diffraction Grid to Measure the Wavelength of a POF Laser

Sri Purwaningsih, Neneng Lestari, Edi Yuversa, Cicyn Riantoni

Abstract


The research has been carried out to determine the wavelength of the POF laser using a diffraction grating. The diffraction grating used consists of three kinds of grid constants, namely 100 lines/mm, 300 lines/mm, and 600 lines/mm. Furthermore, the variation of the distance between the grid and the screen with a length of 40 cm, 60 cm, and 90 cm is carried out. The results showed that the wavelength of the POF laser light was between 664.07 nm-728.31 nm and the red monochromatic light source obtained the interference pattern of light on the screen as well as red monochromatic light. Based on the results of the research, it can be proven that the wavelength obtained from the use of a diffraction grating to measure the wavelength of the red laser is close to the wavelength value of 664.07 nm.

Keywords


Diffraction; POF Laser; Wavelength

Full Text:

PDF (English)

References


Zhu, L., Xue, P., Lan, Q., Meng, G., Ren, Y., Yang, Z., ... & Liu, Z. (2021). Recent research and development status of laser cladding: A review. Optics & Laser Technology, 138: 106915.

Lei, L., Dong, Q., Gundogdu, K., & So, F. (2021). Metal halide perovskites for laser applications. Advanced Functional Materials, 31(16): 2010144.

Di Piazza, A., Hatsagortsyan, K. Z., & Keitel, C. H. (2008). Laser-photon merging in proton-laser collisions. Physical Review A, 78(6): 062109.

Jia, H., Sun, H., Wang, H., Wu, Y., & Wang, H. (2021). Scanning strategy in selective laser melting (SLM): a review. The International Journal of Advanced Manufacturing Technology, 113: 2413-2435.

Siddiqui, A. A., & Dubey, A. K. (2021). Recent trends in laser cladding and surface alloying. Optics & Laser Technology, 134: 106619.

Jalas, S., Kirchen, M., Messner, P., Winkler, P., Hübner, L., Dirkwinkel, J., ... & Maier, A. R. (2021). Bayesian optimization of a laser-plasma accelerator. Physical review letters, 126(10): 104801.

Spampinati, S., Allaria, E., Badano, L., Bassanese, S., Biedron, S., Castronovo, D., ... & Svandrlik, M. (2014). Laser heater commissioning at an externally seeded free-electron laser. Physical Review Special Topics-Accelerators and Beams, 17(12): 120705.

Kluge, T., Rödel, M., Metzkes-Ng, J., Pelka, A., Garcia, A. L., Prencipe, I., ... & Cowan, T. E. (2018). Observation of ultrafast solid-density plasma dynamics using femtosecond x-ray pulses from a free-electron laser. Physical Review X, 8(3): 031068.

Ratner, D., Fry, A., Stupakov, G., & White, W. (2012). Laser phase errors in seeded free electron lasers. Physical Review Special Topics-Accelerators and Beams, 15(3): 030702.

Young, H. D., Freedman, R. A., & Ford, A. L. (2013). University Physics with Modern Physics Technology Update. Pearson Education.

Liehr, S., Burgmeier, J., Krebber, K., & Schade, W. (2012, October). Fiber optic bend and temperature sensing in femtosecond laser-structured POF. In OFS2012 22nd International Conference on Optical Fiber Sensors (Vol. 8421, pp. 604-607). SPIE.

Arrue, J., Jiménez, F., Ayesta, I., Asuncion Illarramendi, M., & Zubia, J. (2011). Polymer-optical-fiber lasers and amplifiers doped with organic dyes. Polymers, 3(3): 1162-1180.

Yoon, J. W., Kim, Y. G., Choi, I. W., Sung, J. H., Lee, H. W., Lee, S. K., & Nam, C. H. (2021). Realization of laser intensity over 1023 W/cm2. Optica, 8(5): 630-635.

Baily, C., & Finkelstein, N. D. (2009). Development of quantum perspectives in modern physics. Physical Review Special Topics-Physics Education Research, 5(1): 010106.

Ziemann, O., Krauser, J., Zamzow, P. E., & Daum, W. (2008). POF handbook. Springer.

Luo, Y., Yan, B., Zhang, Q., Peng, G. D., Wen, J., & Zhang, J. (2017). Fabrication of polymer optical fibre (POF) gratings. Sensors, 17(3): 511.

Collini, M., D’Alfonso, L., & Chirico, G. (2016). Hands-on Fourier analysis by means of far-field diffraction. European Journal of Physics, 37(6): 065701.

Gates-Rector, S., & Blanton, T. (2019). The powder diffraction file: a quality materials characterization database. Powder Diffraction, 34(4): 352-360.

Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., ... & Abrahams, J. P. (2019). 3D electron diffraction: the nanocrystallography revolution. ACS Central Science, 5(8): 1315-1329.

Uprichard, E., & Dawney, L. (2019). Data diffraction: Challenging data integration in mixed methods research. Journal of Mixed Methods Research, 13(1): 19-32.

Manoj, B., & Kunjomana, A. G. (2012). Study of stacking structure of amorphous carbon by X-ray diffraction technique. International Journal of Electrochemical Science, 7(4): 3127-3134.

Rivera-Ortega, U., & Pico-Gonzalez, B. (2015). Wavelength estimation by using the Airy disk from a diffraction pattern with didactic purposes. Physics Education, 51(1): 015012.

Blanchard, P. E., Liu, S., Kennedy, B. J., Ling, C. D., Avdeev, M., Aitken, J. B., ... & Tadich, A. (2013). Investigating the local structure of lanthanoid hafnates Ln2Hf2O7 via diffraction and spectroscopy. The Journal of Physical Chemistry C, 117(5): 2266-2273.

Popov, V., Boust, F., & Burokur, S. N. (2018). Controlling diffraction patterns with metagratings. Physical Review Applied, 10(1): 011002.

Popova, A. N. (2017). Crystallographic analysis of graphite by X-ray diffraction. Coke and Chemistry, 60: 361-365.

Kholifudin, M. Y. (2017). Sinar Laser Mainan Sebagai Alternatif Sumbar cahaya Monokromatik Praktikum Kisi Difraksi Cahaya. Jurnal Penelitian Pembelajaran Fisika, 8(2).

Goldberg, A. Z., & James, D. F. (2019). Entanglement generation via diffraction. Physical Review A, 100(4): 042332.

Le, A. D., Mueller, A. H., & Munier, S. (2021). Analytical asymptotics for hard diffraction. Physical Review D, 104(3): 034026.

Suminta, S. (2003). Simulasi pola difraksi sinar-x berbagai jenis mineral zeolit alam dengan program rietan. Zeolit Indones, 2(1): 45-54.

Stan, C. V., Beavers, C. M., Kunz, M., & Tamura, N. (2018). X-ray diffraction under extreme conditions at the Advanced Light Source. Quantum Beam Science, 2(1): 4.

Lacraz, A., Theodosiou, A., & Kalli, K. (2016). Femtosecond laser inscribed Bragg grating arrays in long lengths of polymer optical fibres; a route to practical sensing with POF. Electronics Letters, 52(19): 1626-1627.




DOI: http://dx.doi.org/10.26737/jipf.v8i2.4007

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Sri Purwaningsih, Neneng Lestari, Edi Yuversa, Cicyn Riantoni

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher

Institute of Managing and Publishing of Scientific Journals
STKIP Singkawang

Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia

Website: http://journal.stkipsingkawang.ac.id/index.php/JIPF
Email: [email protected]

 


JIPF Indexed by:

 

Copyright (c) JIPF (Jurnal Ilmu Pendidikan Fisika)

ISSN 2477-8451 (Online) and ISSN 2477-5959 (Print)