Viscosity of Sumbawa Honey Based on Faxen Correction Factor: Consumer Protection Efforts against Fraud

Moh. Irma Sukarelawan, Yudhiakto Pramudya, Siti Anisatur Rofiqah, Endra Putra Raharja

Abstract


This study is aimed at determining the viscosity of Sumbawa honey. The sample used was produced by the Apis Dorsata species of honeybees, having three different types of concentrations: 10%, 20% and 30%, respectively. The test sample solution was at a temperature of 23.3 ± 0.5 oC. The viscosity value was determined using the corrected vertical spherical oscillation method. The results of this study identified a tendency for increased viscosity to the concentration of honey solution, which has been determined by extrapolating the equation of the linear regression. The relationship of concentration to true viscosity satisfies the equation y = 0.0199x + 0.0160. Furthermore, the Sumbawa honey viscosity was 2.006 Pa.s.

Keywords


Apis Dorsata; Consumer Protection; Faxen Correction Factor; Sumbawa Honey; Viscosity

Full Text:

PDF (English)

References


Gratzer, K., Susilo, F., Purnomo, D., Fiedler, S., & Brodschneider, R. (2019). Challenges for beekeeping in Indonesia with autochthonous and introduced bees. Bee World, 96(2): 40-44.

Carreck, N. L. (2018). Honey. Journal of Apicultural Research, 57(1): 1-4.

Subramanian, R., Umesh Hebbar, H., & Rastogi, N. K. (2007). Processing of honey: A review. International Journal of Food Properties, 10(1): 127-143.

Musa Özcan, M., & Al Juhaimi, F. (2015). Honey as source of natural antioxidants. Journal of Apicultural Research, 54(3): 145-154.

Reybroeck, W. (2018). Residues of antibiotics and chemotherapeutics in honey. Journal of Apicultural Research, 57(1): 97-112.

Otim, A. S., Kajobe, R., Abila, P. P. O., Kasangaki, P., & Echodu, R. (2019). Important Plants for Honey Production in Four Agro Ecological Zones of Uganda. Bee World, 96(3): 81-86.

Ahmed, Z. H., Tawfik, A. I., Abdel-Rahman, M. F., & Moustafa, A. M. (2020). Nutritional Value and Physiological Effects of Some Proteinaceous Diets on Honey Bee Workers (Apis mellifera L.). Bee World, 97(1): 26-31.

Beretta, G., Granata, P., Ferrero, M., Orioli, M., & Facino, R. M. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533(2): 185-191.

Al-Mamary, M., Al-Meeri, A., & Al-Habori, M. (2002). Antioxidant activities and total phenolics of different types of honey. Nutrition research, 22(9): 1041-1047.

Doner, L. W. (1977). The sugars of honey—a review. Journal of the Science of Food and Agriculture, 28(5): 443-456.

Bogdanov, S., Jurendic, T., Sieber, R., & Gallmann, P. (2008). Honey for nutrition and health: a review. Journal of the American College of Nutrition, 27(6): 677-689.

Eteraf-Oskouei, T., & Najafi, M. (2013). Traditional and modern uses of natural honey in human diseases: a review. Iranian journal of basic medical sciences, 16(6): 731-742.

Schouten, C., Lloyd, D., & Lloyd, H. (2019). Beekeeping With the Asian Honey Bee (Apis cerana javana Fabr) in the Indonesian Islands of Java, Bali, Nusa Penida, and Sumbawa. Bee world, 96(2): 45-49.

Silva, V. M. D., Torres Filho, R. D. A., & Resende, J. V. D. (2017). Rheological properties of selected Brazilian honeys as a function of temperature and soluble solid concentration. International journal of food properties, 20(sup3): S2481-S2494.

Apriani, D., Gusnedi, G., & Darvina, Y. (2013). Studi tentang nilai viskositas madu hutan dari beberapa daerah di sumatera barat untuk mengetahui kualitas madu. Pillar of Physics, 2(1): 91-98.

Kamila, R., Syarief, R., & Saptono, I. T. (2017). Analisis pengembangan bisnis madu pada CV Ath-Thoifah dengan pendekatan business model canvas. Jurnal Agribisnis Indonesia, 5(2): 173-184.

Sarah, D., Suryana, R. N., & Kirbrandoko, K. (2019). Strategi Bersaing Industri Madu (Studi Kasus: CV Madu Apiari Mutiara). Jurnal Aplikasi Bisnis dan Manajemen (JABM), 5(1): 71-83.

Swari, N. I., Wirawan, R., Qomariyah, N., & Al Hadi, K. (2019). Analisis Kadar Air Dalam Madu Menggunakan Kombinasi Metode Kapasitansi Dan Indeks Bias. KONSTAN-JURNAL FISIKA DAN PENDIDIKAN FISIKA, 4(1): 1-10.

Bouhlali, E. D. T., Bammou, M., Sellam, K., El Midaoui, A., Bourkhis, B., Ennassir, J., ... & Filali-Zegzouti, Y. (2019). Physicochemical properties of eleven monofloral honey samples produced in Morocco. Arab Journal of Basic and Applied Sciences, 26(1): 476-487.

Marcazzan, G. L., Mucignat-Caretta, C., Marina Marchese, C., & Piana, M. L. (2018). A review of methods for honey sensory analysis. Journal of Apicultural Research, 57(1): 75-87.

Saefatu, S. S. S., & Setiawan, A. (2012). Menguji kemurnian madu melalui pengukuran viskositas zat cair. In Prosiding Seminar Nasional Sains dan Pendidikan Sains UKSW.

Kek, S. P., Chin, N. L., Yusof, Y. A., Tan, S. W., & Chua, L. S. (2017). Classification of entomological origin of honey based on its physicochemical and antioxidant properties. International journal of food properties, 20(sup3): S2723-S2738.

Dinkov, D. (2003). A scientific note on the specific optical rotation of three honey types from Bulgaria. Apidologie, 34(3): 319-320.

Primorac, L., Flanjak, I., & Topolnjak, Z. (2011). Specific rotation and carbohydrate profile of Croatian unifloral honeys. Czech Journal of Food Sciences, 29(5): 515-519.

Bertoncelj, J., Golob, T., Kropf, U., & Korošec, M. (2011). Characterisation of Slovenian honeys on the basis of sensory and physicochemical analysis with a chemometric approach. International journal of food science & technology, 46(8): 1661-1671.

Chakir, A., Romane, A., Marcazzan, G. L., & Ferrazzi, P. (2016). Physicochemical properties of some honeys produced from different plants in Morocco. Arabian Journal of Chemistry, 9: S946-S954.

Oroian, M. (2013). Measurement, prediction and correlation of density, viscosity, surface tension and ultrasonic velocity of different honey types at different temperatures. Journal of Food Engineering, 119(1): 167-172.

de Almeida‐Muradian, L. B., Stramm, K. M., & Estevinho, L. M. (2014). Efficiency of the FT‐IR ATR spectrometry for the prediction of the physicochemical characteristics of M elipona subnitida honey and study of the temperature's effect on those properties. International journal of food science & technology, 49(1): 188-195.

Yap, S. K., Chin, N. L., Yusof, Y. A., & Chong, K. Y. (2019). Quality characteristics of dehydrated raw Kelulut honey. International Journal of Food Properties, 22(1): 556-571.

Machado De-Melo, A. A., Almeida-Muradian, L. B. D., Sancho, M. T., & Pascual-Maté, A. (2018). Composition and properties of Apis mellifera honey: A review. Journal of Apicultural Research, 57(1): 5-37.

Alvarez-Suarez, J. M., Gasparrini, M., Forbes-Hernández, T. Y., Mazzoni, L., & Giampieri, F. (2014). The composition and biological activity of honey: a focus on Manuka honey. Foods, 3(3): 420-432.

Manyi-Loh, C. E., Ndip, R. N., & Clarke, A. M. (2011). Volatile compounds in honey: a review on their involvement in aroma, botanical origin determination and potential biomedical activities. International Journal of Molecular Sciences, 12(12): 9514-9532.

Costa, P. A., Moraes, I. C. F., Bittante, A. M. Q., do Amaral Sobral, P. J., Gomide, C. A., & Carrer, C. C. (2013). Physical properties of honeys produced in the Northeast of Brazil. International Journal of Food Studies, 2(1): 118-125.

Gleiter, R. A., Horn, H., & Isengard, H. D. (2006). Influence of type and state of crystallisation on the water activity of honey. Food Chemistry, 96(3): 441-445.

Shamsudin, S., Selamat, J., Sanny, M., Abd. Razak, S. B., Jambari, N. N., Mian, Z., & Khatib, A. (2019). Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. International Journal of Food Properties, 22(1): 239-264.

Belay, A., Haki, G. D., Birringer, M., Borck, H., Lee, Y. C., Cho, C. W., ... & Melaku, S. (2017). Sugar profile and physicochemical properties of Ethiopian monofloral honey. International Journal of Food Properties, 20(11): 2855-2866.

Abdulkhaliq, A., & Swaileh, K. M. (2017). Physico-chemical properties of multi-floral honey from the West Bank, Palestine. International Journal of Food Properties, 20(2): 447-454.

Mossel, B., Bhandari, B., D'Arcy, B., & Caffin, N. (2003). Determination of viscosity of some Australian honeys based on composition. International Journal of Food Properties, 6(1): 87-97.

James, O. O., Mesubi, M. A., Usman, L. A., Yeye, S. O., Ajanaku, K. O., Ogunniran, K. O., ... & Siyanbola, T. O. (2009). Physical characterisation of some honey samples from North-Central Nigeria. International Journal of Physical Sciences, 4(9): 464-470.

Lewoyehu, M., & Amare, M. (2019). Comparative evaluation of analytical methods for determining the antioxidant activities of honey: A review. Cogent Food & Agriculture, 5(1): 1685059.

Thrasyvoulou, A., Tananaki, C., Goras, G., Karazafiris, E., Dimou, M., Liolios, V., ... & Gounari, S. (2018). Legislation of honey criteria and standards. Journal of Apicultural Research, 57(1): 88-96.

Boussaid, A., Chouaibi, M., Rezig, L., Missaoui, R., Donsí, F., Ferrari, G., & Hamdi, S. (2015). Physicochemical, rheological, and thermal properties of six types of honey from various floral origins in Tunisia. International journal of food properties, 18(12): 2624-2637.

Kraftmakher, Y. (2010). Rotational viscometers—a subject for student projects. Physics Education, 45(6): 622-628.

Li, W., Kagan, G., Hopson, R., & Williard, P. G. (2011). Measurement of Solution Viscosity via Diffusion-Ordered NMR Spectroscopy (DOSY). Journal of Chemical Education, 88(9): 1331-1335.

Mulyono, T., Putra, A. S., & Neran, N. (2013). Disain Viskometer Kapiler Terkomputerisasi (The Design of Computerized Capillary Viscometer). Jurnal Sains dan Teknologi Kimia, 4(2): 169-173.

Nelkon, M., & Parker, P. (1995). Advanced Level Physics, 3rd ed. London: Heinemann Educational Books.

Oktova, R., & Diana, N. (2013). Penentuan koefisien viskositas air menggunakan metode getaran pegas dengan koreksi kedalaman penetrasi dan koreksi efek dinding. Berkala Fisika Indonesia, 5(1): 25-34.

Pascual-Maté, A., Osés, S. M., Fernandez-Muino, M. A., & Sancho, M. T. (2018). Methods of analysis of honey. Journal of Apicultural Research, 57(1): 38-74.

Landau, L. D., & Lifshitz, E. M. (1987). Fluid Mechanics, 2nd ed. Oxford: Pergamon.

Viswanath, D. S., Ghosh, T. K., Prasad, D. H. L., Dutt, N. V. K., & Rani, K. Y. (2007). Viscosity of Liquids: Theory, Estimation, Experiment, and Data. Netherlands: Springer.

Pain, H. J. (2005). The Physics of Vibrations and Waves, 6th ed. London: John Wiley & Sons ltd.

Zaitoun, S., Ghzawi, A. A. M., Al-Malah, K. I., & Abu-Jdayil, B. (2001). Rheological properties of selected light colored Jordanian honey. International Journal of Food Properties, 4(1): 139-148.

Saxena, S., Panicker, L., & Gautam, S. (2014). Rheology of Indian honey: Effect of temperature and gamma radiation. International journal of food science, 2014: 1-6.

Mossel, B., Bhandari, B., D'Arcy, B., & Caffin, N. (2000). Use of an Arrhenius model to predict rheological behaviour in some Australian honeys. LWT-Food Science and Technology, 33(8): 545-552.




DOI: http://dx.doi.org/10.26737/jipf.v6i2.1984

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Moh. Irma Sukarelawan, Yudhiakto Pramudya, Siti Anisatur Rofiqah, Endra Putra Raharja

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher

Institute of Managing and Publishing of Scientific Journals
STKIP Singkawang

Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia

Website: http://journal.stkipsingkawang.ac.id/index.php/JIPF
Email: [email protected]

 


JIPF Indexed by:

 

Copyright (c) JIPF (Jurnal Ilmu Pendidikan Fisika)

ISSN 2477-8451 (Online) and ISSN 2477-5959 (Print)