Hawking Temperature Modification and the Physical Dynamics of Black Holes: A Study of the Influence of Internal and Cosmological Variables
Abstract
The main objective of the study is to develop a model that modifies the traditional Hawking temperature by considering the influence of internal variables such as radius, mass, electric charge, angular momentum, and cosmological constant. The research method involves mathematical analysis and computational modeling based on the modified Hawking temperature equation. The results show that the modified Hawking temperature produces non-linear corrections that show the interaction between black holes and the quantum structure of spacetime. graphical representations visualize the variation of Hawking temperature with changes in area, electric charge, angular momentum, and cosmological parameters. The implications of the research extend to the understanding of the thermal properties of black holes in the context of gravitational and quantum theories. The research identifies gaps in the knowledge of the effects of cosmological parameters on black hole thermodynamics and introduces Hawking temperature modifications that have not been mapped in detail before. The study concludes that the Hawking temperature modification provides a strong foundation for further research in black hole physics, particularly in the effect of physical and cosmological parameters on the thermal properties of black holes.
Keywords
Full Text:
PDF (English)References
Volonteri, M., Habouzit, M., & Colpi, M. (2021). The origins of massive black holes. Nature Reviews Physics, 3(11), 732-743.
Pribadi, P., Arief, M., Raisal, A. Y., Nababan, J., Negara, A. A. P., Laksana, A., ... & Siagian, R. C. (2022). Ilmu Dasar Astronomi. wawasan Ilmu.
Mabkhout, S. A. What are Black Holes and do they really exist?.
Pandara, D. P., Nasution, B., Alfaris, L., Muhammad, A. C., Nurahman, A., & Siagian, R. C. Analisis Parameter Orbit Bintang di Dekat Lubang Hitam SgrA* dan Implikasinya dalam Astronomi. Wahana Fisika, 8(2), 144-164.
Bronzwaer, T., & Falcke, H. (2021). The nature of black hole shadows. The Astrophysical Journal, 920(2), 155.
Alfaris, L., Siagian, R. C., & Sumarto, E. P. (2023). Study Review of the Speed of Light in Space-Time for STEM Student. Jurnal Penelitian Pendidikan IPA, 9(2), 509-519.
Landsman, K. (2021). Foundations of General Relativity: From Einstein to Black Holes (p. 394). Radboud University Press.
Hartle, J. B. (2021). Gravity: an introduction to Einstein's general relativity. Cambridge University Press.
Hawking, S. (2020). Stephen Hawking. Please join me in applauding the ESA-European Space Agency’s historic efforts with the Rosetta Mission and landing a spacecraft on a rotating comet.“[Facebook status update]. Available from:< https://www. facebook. com/stephenhawking/posts/730219987065101>[Accessed 21 September 2015].
Melia, F. (2003). The Black Hole at the Center of Our Galaxy. Princeton University Press.
Rosabal, J. A. (2020). Everything is a “matter” of perspective: the Unruh effect. Fortschritte der Physik, 68(1), 1900090.
Almeida, C. R. (2021). The thermodynamics of black holes: from Penrose process to Hawking radiation. The European Physical Journal H, 46(1), 20.
Kolishetty, K. (2014). Quantum Properties of Black Hole. Lancaster University (United Kingdom).
Dabholkar, A., & Nampuri, S. (2012). Quantum black holes. In Strings and fundamental physics (pp. 165-232). Berlin, Heidelberg: Springer Berlin Heidelberg.
Frolov, V., & Novikov, I. (2012). Black hole physics: Basic concepts and new developments (Vol. 96). Springer Science & Business Media.
Sinaga, M. P., Pandara, D. P., Nyuswantoro, U. I., Nasution, B., & Siagian, R. C. (2023). Visualizations and Analyses of Quantum Behavior, Spacetime Curvature, and Metric Relationships in Relativistic Physics. Jurnal Neutrino: Jurnal Fisika dan Aplikasinya, 16(1), 37-52.
Tursunov, A., Stuchlík, Z., Kološ, M., Dadhich, N., & Ahmedov, B. (2020). Supermassive black holes as possible sources of ultrahigh-energy cosmic rays. The Astrophysical Journal, 895(1), 14.
Volovik, G. E. (2021). Effect of the inner horizon on the black hole thermodynamics: Reissner–Nordström black hole and Kerr black hole. Modern Physics Letters A, 36(24), 2150177.
Perlick, V., & Tsupko, O. Y. (2022). Calculating black hole shadows: Review of analytical studies. Physics Reports, 947, 1-39.
Övgün, A. (2021). Black hole with confining electric potential in scalar-tensor description of regularized 4-dimensional Einstein-Gauss-Bonnet gravity. Physics Letters B, 820, 136517.
Düztaş, K. (2024). Can the induced increase in the angular velocity prevent the overspinning of BTZ black holes?. The European Physical Journal C, 84(7), 669.
Johnson, C. V., Martin, V. L., & Svesko, A. (2020). Microscopic description of thermodynamic volume in extended black hole thermodynamics. Physical Review D, 101(8), 086006.
Grumiller, D., & Sheikh-Jabbari, M. M. (2022). Black hole physics. Springer, Cham, Switzerland.
Volonteri, M., Pfister, H., Beckmann, R. S., Dubois, Y., Colpi, M., Conselice, C. J., ... & Peirani, S. (2020). Black hole mergers from dwarf to massive galaxies with the NewHorizon and Horizon-AGN simulations. Monthly Notices of the Royal Astronomical Society, 498(2), 2219-2238.
Nam, C. H. (2020). Higher dimensional charged black hole surrounded by quintessence in massive gravity. General Relativity and Gravitation, 52, 1-18.
Juraeva, N., Rayimbaev, J., Abdujabbarov, A., Ahmedov, B., & Palvanov, S. (2021). Distinguishing magnetically and electrically charged Reissner–Nordström black holes by magnetized particle motion. The European Physical Journal C, 81(1), 1-17.
Rodriguez-Gomez, V., Genel, S., Fall, S. M., Pillepich, A., Huertas-Company, M., Nelson, D., ... & Hernquist, L. (2022). Galactic angular momentum in the IllustrisTNG simulation–I. Connection to morphology, halo spin, and black hole mass. Monthly Notices of the Royal Astronomical Society, 512(4), 5978-5994.
Gamboa, A., Gabarrete, C., Domínguez-Fernández, P., Núñez, D., & Sarbach, O. (2021). Accretion of a Vlasov gas onto a black hole from a sphere of finite radius and the role of angular momentum. Physical Review D, 104(8), 083001.
Hayashi, T., Kamada, K., Oshita, N., & Yokoyama, J. I. (2020). On catalyzed vacuum decay around a radiating black hole and the crisis of the electroweak vacuum. Journal of High Energy Physics, 2020(8), 1-27.
Farrah, D., Croker, K. S., Zevin, M., Tarlé, G., Faraoni, V., Petty, S., ... & Weiner, J. (2023). Observational evidence for cosmological coupling of black holes and its implications for an astrophysical source of dark energy. The Astrophysical Journal Letters, 944(2), L31.
Struchtrup, H. (2024). The First Law of Thermodynamics. In Thermodynamics and Energy Conversion: Second Edition (pp. 39-64). Cham: Springer International Publishing.
Medina, H. (2021). Principles of Thermodynamics.
Siagian, R. C., Alfaris, L., Nurahman, A., & Sumarto, E. P. (2023). Termodinamika Lubang Hitam: Hukum Pertama Dan Kedua Serta Persamaan Entropi. Jurnal Kumparan Fisika, 6(1), 1-10.
Mbagwu, J. P. C., Abubakar, Z. L., & Ozuomba, J. O. (2020). A review article on Einstein special theory of relativity. International Journal of Theoretical and Mathematical Physics, 10(3), 65-71.
Habouzit, M., Li, Y., Somerville, R. S., Genel, S., Pillepich, A., Volonteri, M., ... & Vogelsberger, M. (2021). Supermassive black holes in cosmological simulations I: M BH− M⋆ relation and black hole mass function. Monthly Notices of the Royal Astronomical Society, 503(2), 1940-1975.
Siagian, R. C., Alfaris, L., Nurahman, A., Muhammad, A. C., Nyuswantoro, U. I., & Nasution, B. (2023). Separation of Variables Method in Solving Partial Differential Equations and Investigating the Relationship between Gravitational Field Tensor and Energy-Momentum Tensor in Einstein's Theory of Gravity. Kappa Journal, 7(2), 343-351.
Bokulić, A., Smolić, I., & Jurić, T. (2021). Black hole thermodynamics in the presence of nonlinear electromagnetic fields. Physical Review D, 103(12), 124059.
Hausman, L. (2021). Black Hole thermodynamics. Quantum Thermodynamics Summer School.
Frost, J. (2022). Investigations of higher order multipole effects within the context of quantum electrodynamics (Doctoral dissertation, University of East Anglia).
Massar, S., & Parentani, R. (2000). How the change in horizon area drives black hole evaporation. Nuclear Physics B, 575(1-2), 333-356.
Wei, S. W., Liang, B., & Liu, Y. X. (2017). Critical phenomena and chemical potential of a charged AdS black hole. Physical Review D, 96(12), 124018.
Eslam Panah, B., & Jafarzade, K. (2022). Thermal stability, P-V criticality and heat engine of charged rotating accelerating black holes. General Relativity and Gravitation, 54(2), 19.
Dehyadegari, A., & Sheykhi, A. (2020). Critical behavior of charged dilaton black holes in AdS space. Physical Review D, 102(6), 064021.
Camilloni, F., Grignani, G., Harmark, T., Oliveri, R., Orselli, M., & Pica, D. (2023). Tidal deformations of a binary system induced by an external Kerr black hole. Physical Review D, 107(8), 084011.
Mottola, E. (2022). The effective theory of gravity and dynamical vacuum energy. Journal of High Energy Physics, 2022(11), 1-39.
Barrow, J. D. (2020). The area of a rough black hole. Physics Letters B, 808, 135643.
Hashimoto, K., Iizuka, N., & Matsuo, Y. (2020). Islands in Schwarzschild black holes. Journal of High Energy Physics, 2020(6), 1-21.
Siagian, R. C., Alfaris, L., Muhammad, A. C., Mamou, A. E., Rancak, G. T., Nyuswantoroe, U. I., ... & Sumarto, E. P. (2023). Pengantar Matematika Geometri Lubang Hitam. wawasan Ilmu.
Fernandes, T. V., & Lemos, J. P. (2022). Electrically charged spherical matter shells in higher dimensions: Entropy, thermodynamic stability, and the black hole limit. Physical Review D, 106(10), 104008.
Tarafdar, P., Maity, S., & Das, T. K. (2021). Influence of flow thickness on general relativistic low angular momentum accretion around spinning black holes. Physical Review D, 103(2), 023023.
Panah, B. E., Jafarzade, K., & Hendi, S. (2020). Charged 4D Einstein-Gauss-Bonnet-AdS black holes: Shadow, energy emission, deflection angle and heat engine. Nuclear Physics B, 961, 115269.
Sartini, F., & Geiller, M. (2021). Quantum dynamics of the black hole interior in loop quantum cosmology. Physical Review D, 103(6), 066014.
Gibbons, G. W., & Hawking, S. W. (1977). Cosmological event horizons, thermodynamics, and particle creation. Physical Review D, 15(10), 2738.
Dougherty, J., & Callender, C. (2016). Black hole thermodynamics: More than an analogy?.
Abuter, R., Amorim, A., Bauböck, M., Berger, J. P., Bonnet, H., Brandner, W., ... & Zins, G. (2020). Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astronomy & Astrophysics, 636, L5.
Siagian, R. C., Alfaris, L., Muhammad, A. C., Nyuswantoro, U. I., & Rancak, G. T. (2023). The Orbital Properties of Black Holes: Exploring the Relationship between Orbital Velocity and Distance. Journal of Physics and Its Applications, 5(2), 35-42.
Nasution, B., Ritonga, W., Siagian, R. C., Alfaris, L., Muhammad, A. C., Nyuswantoro, U. I., & Rancak, G. T. (2023). Physics Visualization of Schwarzschild Black Hole through Graphic Representation of the Regge-Wheeler Equation using R-Studio Approach. Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 20(1), 8-24.
Debnath, U. (2020). Entropy bound of horizons of some regular black holes. Modern Physics Letters A, 35(10), 2050070.
Haldar, A., & Biswas, R. (2020). Thermodynamic studies with modifications of entropy: different black holes embedded in quintessence. General Relativity and Gravitation, 52(2), 19.
Kodukula, S. P. (2021). Dark Energy Is a Phenomenal Effect of the Expanding Universe-Possibility for Experimental Verification. Journal of High Energy Physics, Gravitation and Cosmology, 7(4), 1333-1352.
Watson, C. N. (2022). Entropy scale factor may explain gravity, dark matter, and the expansion of space. Physics Essays, 35(1), 27-32.
Sharif, M., & Khan, A. (2022). Effects of non-linear electrodynamics on thermodynamics of charged black hole. Chinese Journal of Physics, 77, 1130-1144.
Li, Z., Qiao, J., Zhao, W., & Er, X. (2022). Gravitational Faraday Rotation of gravitational waves by a Kerr black hole. Journal of Cosmology and Astroparticle Physics, 2022(10), 095.
Nojiri, S. I., Odintsov, S. D., & Faraoni, V. (2022). New entropies, black holes, and holographic dark energy. Astrophysics, 65(4), 534-551.
Nasution, B., Siagian, R. C., Ritonga, W., Alfaris, L., Muhammad, A. C., & Nurahman, A. (2023). Investigating the Density Distribution of Dark Matter in Galaxies: Monte Carlo Analysis and Model Comparison. Indonesian Review of Physics (IRiP), 6(1).
Ma, Y., Zhang, Y., Zhang, L., Wu, L., Gao, Y., Cao, S., & Pan, Y. (2021). Phase transition and entropic force of de Sitter black hole in massive gravity. The European Physical Journal C, 81, 1-12.
Marongwe, S. (2023). Horizon scale tests of quantum gravity using the event horizon telescope observations. International Journal of Modern Physics D, 32(7), 2350047-196.
Gonoskov, A., Blackburn, T. G., Marklund, M., & Bulanov, S. S. (2022). Charged particle motion and radiation in strong electromagnetic fields. Reviews of Modern Physics, 94(4), 045001.
Babar, G. Z., Atamurotov, F., Ul Islam, S., & Ghosh, S. G. (2021). Particle acceleration around rotating Einstein-Born-Infeld black hole and plasma effect on gravitational lensing. Physical Review D, 103(8), 084057.
Nasution, B., Siagian, R. C., Nurahman, A., & Alfaris, L. (2023). Exploring the Interconnectedness of Cosmological Parameters and Observations: Insights Into the Properties and Evolution of the Universe. Spektra: Jurnal Fisika dan Aplikasinya, 8(1), 25-42.
Siagian, R. C., Alfaris, L., & Sinaga, G. H. D. (2023, April). Review for Understanding Dark Matter in The Universe as Negative Energy. In Proceeding International Conference on Religion, Science and Education (Vol. 2, pp. 679-685).
Sahroni, T. R., Pandara, D. P., Wibowo, A. H., Alatif, Y. H., Wardana, F., Kasim, M. S., & Siagian, R. C. (2024). Approximative Relationship Between The Energy Function (E) and Hubble Function (H) in Cosmology: Practical and Theoretical Analysis. Jurnal Pendidikan Fisika Indonesia, 20(1), 52-62.
Abdul-Masih, M., Banyard, G., Bodensteiner, J., Bordier, E., Bowman, D. M., Dsilva, K., ... & Sana, H. (2020). On the signature of a 70-solar-mass black hole in LB-1. Nature, 580(7805), E11-E15.
Li, P. C., Guo, M., & Chen, B. (2020). Shadow of a spinning black hole in an expanding universe. Physical Review D, 101(8), 084041.
Euvé, L. P., & Rousseaux, G. (2021). Non-linear processes and stimulated Hawking radiation in hydrodynamics for decelerating subcritical free surface flows with a subluminal dispersion relation. arXiv preprint arXiv:2112.12504.
Auffinger, J. (2023). Primordial black hole constraints with Hawking radiation—A review. Progress in Particle and Nuclear Physics, 131, 104040.
Chou, C. J., Lao, H. B., & Yang, Y. (2022). Page curve of effective Hawking radiation. Physical Review D, 106(6), 066008.
Ditta, A., Javed, F., Mustafa, G., Maurya, S. K., Sofuoğlu, D., & Atamurotov, F. (2024). Thermal analysis of charged Symmergent black hole with logarithmic correction. Chinese Journal of Physics, 88, 287-300.
McMaken, T., & Hamilton, A. J. (2023). Hawking radiation inside a charged black hole. Physical Review D, 107(8), 085010.
Ibungochouba Singh, T., Meitei, Y. K., & Meitei, I. A. (2020). Effect of GUP on Hawking radiation of BTZ black hole. International Journal of Modern Physics A, 35(05), 2050018.
Ferreira, R. Z., & Heissenberg, C. (2021). Super-Hawking radiation. Journal of High Energy Physics, 2021(2), 1-48.
Maghlaoui, L., & Hess, P. O. (2024). The effects of a minimal length on the Kerr metric and the Hawking temperature. arXiv preprint arXiv:2405.01325.
Ghosh, S., & Barman, S. (2022). Hawking effect in an extremal Kerr black hole spacetime. Physical Review D, 105(4), 045005.
Almeida, C. R., & Jacquet, M. J. (2023). Analogue gravity and the Hawking effect: historical perspective and literature review. The European Physical Journal H, 48(1), 15.
Kolobov, V. I., Golubkov, K., Muñoz de Nova, J. R., & Steinhauer, J. (2021). Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole. Nature Physics, 17(3), 362-367.
Herrero-Valea, M., Liberati, S., & Santos-Garcia, R. (2021). Hawking radiation from universal horizons. Journal of High Energy Physics, 2021(4), 1-32.
Tatum, E. T., & Seshavatharam, U. V. S. (2021). Flat Space Cosmology: A New Model of the Universe Incorporating Astronomical Observations of Black Holes, Dark Energy and Dark Matter. Universal-Publishers.
Hendi, S. H., Sajadi, S. N., & Khademi, M. (2021). Physical properties of a regular rotating black hole: Thermodynamics, stability, and quasinormal modes. Physical Review D, 103(6), 064016.
Errehymy, A., Maurya, S. K., Mustafa, G., Hansraj, S., Alrebdi, H. I., & Abdel‐Aty, A. H. (2023). Black Hole Solutions with Dark Matter Halos in the Four‐Dimensional Einstein‐Gauss‐Bonnet Gravity. Fortschritte der Physik, 71(10-11), 2300052.
Estrada, M., & Prado, R. (2020). A note of the first law of thermodynamics by gravitational decoupling. The European Physical Journal C, 80(8), 799.
D’Abramo, G. (2020). Mass–energy connection without special relativity. European Journal of Physics, 42(1), 015606.
DOI: http://dx.doi.org/10.26737/jipf.v9i2.4647
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Taufik Roni Sahroni, Goldberd Harmuda Duva Sinaga, Pratama Jaya, Romdhon Purwanto, Dasep Muhlis, Ruben Cornelius Siagian
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Publisher
Institute of Managing and Publishing of Scientific Journals
STKIP Singkawang
Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia
Website: http://journal.stkipsingkawang.ac.id/index.php/JIPF
Email: [email protected]
JIPF Indexed by:
Copyright (c) JIPF (Jurnal Ilmu Pendidikan Fisika)