Determination of the X-ray Linear Attenuation Coefficient of Clay-Originated Bricks in Central Java Province, Indonesia

Ambrosius Karanggulimu, Edward Harefa

Abstract


The widespread use of radioactivity has culminated in adverse health consequences and has generated an entire health science study. It is established practice that certain precautions must be taken to avoid potential exposure to ionizing radiation like an x-ray. One way to control radiation hazards external is to use a radiation shield. In this study, clay-originated bricks were used as a shield and determine its linear attenuation coefficient of x-ray radiation. The bricks were collected from 5 regencies in Central Java province. Digital fluoroscopy was used as an x-ray radiation source and operated in 81 kV 32 mAs; also, it associated with the multi-purpose detector. It shows that linear attenuation coefficient of Boyolali, Klaten, Magelang, Temanggung, and Semarang bricks respectively are 0.8896 cm-1; 0.7455 cm-1; 0.7115 cm-1; 0.7254 cm-1; and 0.7972 cm-1. Furthermore, we calculate the half-value layer of each brick and indicates that brick from Boyolali is the most effective as a shielding among others that can reduce half value of x-ray radiation dose. This research is expected to enhance the systems integration of radiation shielding safeties and allow for the effective treatment of radiation sources for both humans and the environment.

Keywords


X-rays; Bricks; Linear Attenuation Coefficient; Half Value Layer; Radiation Dose

Full Text:

PDF (English)

References


Verhoef, P. N. W. (1994). Geologi Untuk Teknik Sipil. PT. Erlangga. Jakarta.

Sutarman. (2001). Konsentrasi Radioaktif Jatuhan Di Dalam Berbagai Sampel Lingkungan di Indonesia. Seminar Nasional Keselamatan, Kesehatan, dan Lingkungan. P3KRBiN BATAN.

Abidin, Z. (2014). Analisis Tingkat Radioaktivitas Udara di STTN-BATAN. Seminar Keselamatan Nuklir 2014. STTN-BATAN.

Walsh, L., Schneider, U., Fogtman, A., Kausch, C., McKenna-Lawlor, S., Narici, L., ... & Durante, M. (2019). Research plans in Europe for radiation health hazard assessment in exploratory space missions. Life sciences in space research, 21: 73-82.

Ye, Q. Z. (2016). Safety and effective developing nuclear power to realize green and low-carbon development. Advances in Climate Change Research, 7(1-2): 10-16.

ANS. (2020). American Nuclear Society: Nuclear Energy Research Center. https://www.ans.org/

Inubushi, M., Kaneta, T., Ishimori, T., Imabayashi, E., Okizaki, A., & Oku, N. (2017). Topics of nuclear medicine research in Europe. Annals of nuclear medicine, 31(8): 571-574.

Becquerel, H. (1896). Sur les radiations émises par phosphorescence. Comptes rendus de 1'Academie des Sciences, Paris, 122: 420-421.

Becquerel, A. H. (1896). Sur les radiations invisibles émises par les corps phosphorescents. CR Acad. Sci. Paris, 122: 501.

Becquerel, A. H. (1896). Sur quelques propriétés nouvelles des radiations invisibles émises par divers corps phosphorescents. CR Acad. Sci. Paris, 122: 559.

Becquerel, A. H. (1896). Sur les radiations invisibles émises par les sels d'uranium. CR Acad. Sci. Paris, 122: 689-694.

Radvanyi, P., & Villain, J. (2017). The discovery of radioactivity. Comptes Rendus Physique, 18(9-10): 544-550.

Wojcik, A., & Harms-Ringdahl, M. (2019). Radiation protection biology then and now. International journal of radiation biology, 95(7): 841-850.

Li, H., Liu, C., Zhang, Y., Qi, C., Wei, Y., Zhou, J., ... & Huo, M. (2019). Electron radiation effects on the structural and electrical properties of MoS2 field effect transistors. Nanotechnology, 30(48): 485201.

Abuelhia, E., & Alghamdi, A. (2020). Evaluation of arising exposure of ionizing radiation from computed tomography and the associated health concerns. Journal of Radiation Research and Applied Sciences, 13(1): 295-300.

Mubarak, F., Fayez-Hassan, M., Mansour, N. A., Ahmed, T. S., & Ali, A. (2017). Radiological investigation of high background radiation areas. Scientific reports, 7(1): 1-12.

Adhikari, S. R. (2012). Effect and application of ionization radiation (X-ray) in living organism. Himalayan Physics, 3: 89-92.

Chauhan, V., & Wilkins, R. C. (2019). A comprehensive review of the literature on the biological effects from dental X-ray exposures. International journal of radiation biology, 95(2): 107-119.

Kim, D. I. (2016). PREFACE: How Dangerous Are X-ray Studies That We Undertake Every Day?. Journal of Korean medical science, 31(Suppl 1): S2.

Truong, K., Bradley, S., Baginski, B., Wilson, J. R., Medlin, D., Zheng, L., ... & Dean, D. (2018). The effect of well-characterized, very low-dose x-ray radiation on fibroblasts. PloS one, 13(1): e0190330.

Cervantes, G. A. (2016). The basics of x-rays. Technical Fundamentals of Radiology and CT: IOP Publishing: 1-1.

Hayashi, H., Mihara, Y., Kanazawa, Y., Tomita, E., Goto, S., Takegami, K., ... & Cruz, V. L. E. (2017). Necessity of direct dose measurement during current X-ray diagnosis. Medical Research Archives, 5(2).

Leitabun, Y. M., Sutanto, H., & Anam, C. (2013). Pengukuran Laju Paparan Radiasi Sinar-x Pada Ruang Operator RSUD. Prof. DR. WZ Johannes Kupang. Youngster Physics Journal, 2(2): 49-52.

Putra, H., Satyarno, I., & Wijatna, A. B. (2008). Penggunaan Pasir Besi Dari Kulon Progo Dengan Berat Jenis 4,311 Untuk Mortar Perisai Radiasi Sinar Gamma. In Civil Engineering Forum Teknik Sipil (Vol. 18, No. 3, pp. 909-920).

Herbst, C. P., & Fick, G. H. (2012). Radiation protection and the safe use of X-ray equipment: Laws, regulations and responsibilities. SA Journal of Radiology, 16(2).

Brown, S. C. (2017). Radiation safety: Time to act. Cardiovascular journal of Africa, 28(3): 139.

Hamada, N., & Fujimichi, Y. (2014). Classification of radiation effects for dose limitation purposes: history, current situation and future prospects. Journal of radiation research, 55(4): 629-640.

National Research Council (US) Committee on Evaluation of EPA Guidelines for Exposure to Naturally Occurring Radioactive Materials (1999). Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials. Washington (DC): National Academies Press.

UNSCEAR. (2013). Report of United Nations Scientific Committee on the Effects of Atomic Radiation (Sixty-eight Session, Supplement No. 46). https://www.unscear.org/unscear/en/publications.html.

Inoue, K., Fukushi, M., Van Le, T., Tsuruoka, H., Kasahara, S., & Nimelan, V. (2020). Distribution of gamma radiation dose rate related with natural radionuclides in all of Vietnam and radiological risk assessment of the built-up environment. Scientific reports, 10(1): 1-14.

Kim, J. H. (2018). Three principles for radiation safety: time, distance, and shielding. The Korean journal of pain, 31(3): 145.

Sazali, M. A., Rashid, N. K. A. M., & Hamzah, K. (2019, June). A review on multilayer radiation shielding. In IOP Conference Series: Materials Science and Engineering (Vol. 555, No. 1, p. 012008). IOP Publishing.

Isfahani, H. S., Abtahi, S. M., Roshanzamir, M. A., Shirani, A., & Hejazi, S. M. (2019). Permeability and gamma-ray shielding efficiency of clay modified by barite powder. Geotechnical and Geological Engineering, 37(2): 845-855.

Mann, K. S., Kaur, B., Sidhu, G. S., & Kumar, A. (2013). Investigations of some building materials for γ-rays shielding effectiveness. Radiation Physics and Chemistry, 87: 16-25.

Shamsuzzaman, M., Khan, M. A. M., Bhuiyan, M. M. H., Rahman, M. S., Khan, M. J. H., Paul, D., Sarkar, D. R. (2019). Attenuation Property of Wood and Fiber Reinforced Polymer Composite Materials for Neutron and Gamma Radiation Shielding. American Journal of Materials Science, 9(1): 8-14.

Akca, B., Erzenoglu, S. R. (2016). Measurement of Linear Attenuation Coefficients of Compounds of Some Essential Major Elements. Journal of Multidisciplinary Engineering Science and Technology, 3(6): 5003-5006.

Wang, J., & Blackburn, T. J. (2000). The AAPM/RSNA physics tutorial for residents: X-ray image intensifiers for fluoroscopy. Radiographics, 20(5): 1471-1477.

Mahesh, M. (2001). Fluoroscopy: patient radiation exposure issues. Radiographics, 21(4): 1033-1045.

BAPETEN. (2011). Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 8 Tahun 2011 tentang Keselamatan Radiasi Dalam Penggunaan Pesawat Sinar-X Radiologi Diagnostik dan Intervensional.

Hunge, Y. M., Yadav, A. A., Mahadik, M. A., Mathe, V. L., & Bhosale, C. H. (2018). A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue. Journal of the Taiwan Institute of Chemical Engineers, 85: 273-281.

Chan, H. P., & Doi, K. (1984). Studies of x‐ray energy absorption and quantum noise properties of x‐ray screens by use of Monte Carlo simulation. Medical physics, 11(1): 37-46.

Rhouch, I., Ouakkas, S., Laamyem, A., Essadiqi, E., & Faqir, M. (2021). Sewage Sludge Valorization in Fired Clay Bricks: Physical Properties and Radiological Assessment. Journal of Hazardous, Toxic, and Radioactive Waste, 25(1): 04020057.

Hubbell, J. H. (1969). Photon cross sections, attenuation coefficients and energy absorption coefficients. National Bureau of Standards Report NSRDS-NBS29, Washington DC.

Erdem, M., Baykara, O., Doğru, M., & Kuluöztürk, F. (2010). A novel shielding material prepared from solid waste containing lead for gamma ray. Radiation Physics and Chemistry, 79(9): 917-922.




DOI: http://dx.doi.org/10.26737/jipf.v7i1.2135

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ambrosius Karanggulimu, Edward Harefa

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher

Institute of Managing and Publishing of Scientific Journals
STKIP Singkawang

Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia

Website: http://journal.stkipsingkawang.ac.id/index.php/JIPF
Email: [email protected]

 


JIPF Indexed by:

 

Copyright (c) JIPF (Jurnal Ilmu Pendidikan Fisika)

ISSN 2477-8451 (Online) and ISSN 2477-5959 (Print)