Do It Yourself: Air Drag Force Experiment Using Paper and Scraper Sheet

Rizki Zakwandi, Ariswan Ariswan, Syifa Nurfalah, Tiana Azmi Alawiyah, Widiya Amanda, Ea Cahya Septia Mahen, Ade Yeti Nuryantini

Abstract


Free fall motion in air medium is only influenced by gravitation acceleration. However, there are several variables that caused the observations to be different with the concept. Variables, such as air drag and terminal velocity, are often teachers not presented in detail, causing misconceptions. This study aims to develop a simple experiment on free fall motion by identifying air drag and terminal velocity. The data in this study is the video of free fall motion of paper and scraper analyzed using Tracker video analyze. From the video analyzed, information is obtained in the form of time (t), track (l, θ), and velocity (v) of the object. This study shows that the air drag force increase unto the terminal velocity. The calculation of the drag coefficient giving the number of the paper 2,16 and the scraper 2,10. According to data analyzed, the air drag force is affected by the mass (m), area (A), and the air drag force (FD) with the linear correlation until it reaches the terminal velocity. The result of this study may use as references of free fall motion experiment with other objects and analyze.

Keywords


Drag Force; Physics Experiment; Free Fall Motion; Fluid Dynamic; Terminal Velocity

Full Text:

PDF (English)

References


Jewett, J. W., & Serway, R. A. (2008). Physics for scientists and engineers with modern physics. Cengage Learning EMEA.

Liu, X., Lin, P., & Shao, S. (2014). An ISPH simulation of coupled structure interaction with free surface flows. Journal of Fluids and Structures, 48: 46-61.

Falcovich, G.. & Weizmann. (2011). Fluid Mechanics (A Short course for physicist). Cambridge: Cambridge University Press.

Jugueta, E. A. D., Go, C. K. C., & Indias, J. M. M. (2012). Free fall misconceptions: A comparison between science and non-science university majors. Lat. Am. J. Phys. Educ, 6(S1): 2-5.

Sulistri, E., & Lisdawati, L. (2017). Using Three-Tier Test to Identify the Quantity of Student that Having Misconception on Newton's Laws of Motion Concept. JIPF (Jurnal Ilmu Pendidikan Fisika), 2(1): 4-6.

Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics-Physics Education Research, 10(2): 020119.

Dasriyani, Y., Hufri, & Yohandri. (2015). Pembuatan Set Eksperimen Gerak Jatuh Bebas Berbasis Mikrokontroler dengan Tampilan PC. Pillar of Physics, 5(1): 89-96.

Ma’ruf, F., Septiansyah, F. A., & Wibowo, H. A. C. (2019). Rancangan Prototype Kereta Maglev Sebagai Media Pembelajaran Kontekstual Untuk Menjelaskan Materi Fisika Elektromagnetika. FKIP e-PROCEEDING, 4(1): 87-91.

Wee, L. K., Tan, K. K., Leong, T. K., & Tan, C. (2015). Using Tracker to understand ‘toss up’and free fall motion: a case study. Physics Education, 50(4): 436-442.

Firdaus, T., Erwin, E., & Rosmiati, R. (2019, February). Learning media free fall motion to reduce misconceptions and improve students’ understanding of the concept. In Journal of Physics: Conference Series (Vol. 1157, No. 3, p. 032072). IOP Publishing.

Fowles, G. R., & Cassiday, G. L. (2005). Analytical mechanics. Belmont, CA: Thomson Brooks/Cole,.

Barrio-Perotti, R., Blanco-Marigorta, E., Argüelles-Díaz, K., & Fernández-Oro, J. (2009). Experimental evaluation of the drag coefficient of water rockets by a simple free-fall test. European journal of physics, 30(5): 1039-1048.

Löfdahl, L., & Gad-el-Hak, M. (1999). MEMS-based pressure and shear stress sensors for turbulent flows. Measurement Science and Technology, 10(8): 665-686.

Forjan, M., & Sliško, J. (2017). Simplifications and idealizations in high school physics in Mechanics: a study of Slovenian curriculum and textbooks. European Journal of Physics Education, 5(3): 20-31.

Tinney, C. E., & Valdez, J. (2018). A new test stand for measuring wall shear stress. In 2018 Fluid Dynamics Conference (p. 3085).

Maroto, J. A., Duenas-Molina, J., & de Dios, J. (2005). Experimental evaluation of the drag coefficient for smooth spheres by free fall experiments in old mines. European journal of physics, 26(3): 323-330.

Landell-Mills, N. (2017). Buoyancy Explains Terminal Velocity in Skydiving. Journal of Aeronautics & Aerospace Engineering, 6(2): 1-7.

Susanti, S., Mahen, E. C. S., & Nuryantini, A. Y. (2018). Preliminary study of software tracker usage to analyze inhibitory style on free fall movie events. In MATEC Web of Conferences (Vol. 197, p. 02012). EDP Sciences.

Jung, T., Choi, H., & Kim, J. (2016). Effects of the air layer of an idealized superhydrophobic surface on the slip length and skin-friction drag. Journal of Fluid Mechanics, 790.

Pritchard, P. J., & Mitchell, J. W. (2016). Fox and McDonald's introduction to fluid mechanics. John Wiley & Sons.

Pande, J., & Smith, A. S. (2015). Forces and shapes as determinants of micro-swimming: effect on synchronisation and the utilisation of drag. Soft Matter, 11(12): 2364-2371.

Tang, S., & Kumar, V. (2015, May). Mixed integer quadratic program trajectory generation for a quadrotor with a cable-suspended payload. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2216-2222). IEEE.

Maeda, T., Kamada, Y., Murata, J., Shimizu, K., Ogasawara, T., Nakai, A., & Kasuya, T. (2016). Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades). Renewable energy, 96: 928-939.

Pourtousi, M., Sahu, J. N., & Ganesan, P. (2014). Effect of interfacial forces and turbulence models on predicting flow pattern inside the bubble column. Chemical Engineering and Processing: Process Intensification, 75: 38-47.

Pande, J., & Smith, A. S. (2015). Forces and shapes as determinants of micro-swimming: effect on synchronisation and the utilisation of drag. Soft Matter, 11(12): 2364-2371.

Liu, L., Yan, H., Zhao, G., & Zhuang, J. (2016). Experimental studies on the terminal velocity of air bubbles in water and glycerol aqueous solution. Experimental Thermal and Fluid Science, 78: 254-265.

Dioguardi, F., Mele, D., Dellino, P., & Dürig, T. (2017). The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography. Journal of Volcanology and Geothermal Research, 329: 41-53.

McGaugh, S. S. (2015). The surface density profile of the galactic disk from the terminal velocity curve. The Astrophysical Journal, 816(1): 42.

Xu, B., Huang, N., He, W., & Chen, Y. (2017, April). Investigation on terminal velocity and drag coefficient of particles with different shapes. In Journal of Physics: Conf. Series (Vol. 822, p. 12047).




DOI: http://dx.doi.org/10.26737/jipf.v6i3.1996

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Rizki Zakwandi, Ariswan Ariswan, Syifa Nurfalah, Tiana Azmi Alawiyah, Widiya Amanda, Ea Cahya Septia Mahen, Ade Yeti Nuryantini

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher

Institute of Managing and Publishing of Scientific Journals
STKIP Singkawang

Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia

Website: http://journal.stkipsingkawang.ac.id/index.php/JIPF
Email: [email protected]

 


JIPF Indexed by:

 

Copyright (c) JIPF (Jurnal Ilmu Pendidikan Fisika)

ISSN 2477-8451 (Online) and ISSN 2477-5959 (Print)