Development of Instructional Module Based on Inquiry-Interactive Demonstration to Improve Students’ Critical Thinking Skill

Itsna Yunida Al Husna, Mohammad Masykuri, Muzzazinah Muzzazinah

Abstract


This research was a research and development (R&D) that produced products in the form of learning modules. The purpose of this research are to find out: (1) The characteristics of the material classification and its changes instructional module; (2) The feasibility of the material classification and its changes instructional module; (3) The instructional module effectiveness in increasing critical thinking skills. The procedure of this research are: (1) preliminary research & information gathering; (2) planning (3) initial product development; (4) initial field trial; (5) major product revisions; (6) main field test; (7) operational product revisions; (8) operational field test;(9) final product revision. The results of research and development show: (1) the characteristics of the instructional module as learning objects in accordance with the inquiry-interactive demonstration learning on the classification material and its changes; (2) instructional module eligibility based on experts assessment, education practitioners, and students produces 81.74% achievement with very good qualifications; (3) module as learning objects resulting from the development are effective in improving students' critical thinking skills with an N-Gain score of 0.561.

Keywords


Instructional Module; Interactive Demonstration; Critical Thinking Skill; Science Learning; Junior High School

Full Text:

PDF (English)

References


Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11): 1353-1368.

Wu, H. K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science education, 88(3): 465-492.

Gilbert, J. K., & Treagust, D. F. (2009). Towards a coherent model for macro, submicro and symbolic representations in chemical education. In Multiple representations in chemical education (pp. 333-350). Springer, Dordrecht.

Al-Balushi, S. M. (2013). The effect of different textual narrations on students’ explanations at the submicroscopic level in chemistry. Eurasia Journal of Mathematics, Science and Technology Education, 9(1): 3-10.

Tien, L. T., Teichert, M. A., & Rickey, D. (2007). Effectiveness of a MORE laboratory module in prompting students to revise their molecular-level ideas about solutions. Journal of Chemical Education, 84(1): 175.

Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2008). An evaluation of a teaching intervention to promote students’ ability to use multiple levels of representation when describing and explaining chemical reactions. Research in Science Education, 38(2): 237-248.

Al Husna, I. Y., Masykuri, M., & Muzzazinah, M. (2020). An Analysis of Low-Mastery Learning in Science National Examination 2018 and Its Strategies. In Proceedings of the 2nd International Conference on Education, ICE 2019, no. 23, pp. 689–698.

Depdiknas. (2008). Teknik Penyusunan Modul. Jakarta: Direktorat Jendara Manajemen Pendidikan Dasar dan Menengah.

Prastowo, A. (2012). Panduan Kreatif Membuat Bahan Ajar Inovatif. Yogyakarta: Diva Press.

Nindiasari, H. (2011). Pengembangan Bahan Ajar Dan Instrumen Untuk Meningkatkan Berpikir Reflektif Matematis Berbasis Pendekatan Metakognitif Pada Siswa Sekolah Menengah Atas (SMA). In Semin. Nas. Mat. dan Pendidik. Mat. FMIPA UNY, pp. 251–263.

Tican, C., & Deniz, S. (2019). Pre-Service Teachers' Opinions about the Use of 21st Century Learner and 21st Century Teacher Skills. European Journal of Educational Research, 8(1): 181-197.

Facione, P. A. (2011). Critical thinking: What it is and why it counts. Insight assessment, 2007(1): 1-23.

P21. (2015). Framework for 21st Century Learning. [Online]. Available: https://www.battelleforkids.org. [Accessed: 17-Feb-2020].

Elder, L., & Paul, R. (1997). Critical thinking: Crucial distinctions for questioning. Journal of Developmental Education, 21(2): 34.

Ennis, R. H. (2018). Critical thinking across the curriculum: A vision. Topoi, 37(1): 165-184.

Duron, R., Limbach, B., & Waugh, W. (2006). Critical thinking framework for any discipline. International Journal of Teaching and Learning in Higher Education, 17(2): 160-166.

Kalelioglu, F., & Gülbahar, Y. (2014). The Effect of Instructional Techniques on Critical Thinking and Critical Thinking Dispositions in Online Discussion. Educational Technology & Society, 17(1): 248-258.

Zubaidah, S. (2016, December). Keterampilan abad ke-21: Keterampilan yang diajarkan melalui pembelajaran. In Seminar Nasional Pendidikan dengan Tema “isu-isu strategis pembelajaran MIPA Abad (Vol. 21, No. 10).

Wenning, C. J. (2011). The levels of inquiry model of science teaching. Journal of Physics Teacher Education Online, 6(2): 9-16.

Zimrot, R., & Ashkenazi, G. (2007). Interactive lecture demonstrations: a tool for exploring and enhancing conceptual change. Chemistry Education Research and Practice, 8(2): 197-211.

West, R. W., & Ogden, R. T. (1998). Interactive demonstrations for statistics education on the world wide web. Journal of Statistics Education, 6(3).

Borg, W., & M. Gall, M. (1983). Educational Research Forth Edition. New York: Longman.

Yulianti, E., Al Husna, I. Y., & Susilowati, S. (2018). The Role of Inquiry-Based Interactive Demonstration Learning Model on VIII Grade Students’ Higher Order Thinking Skill. Journal of Science Education Research, 2(1): 35-38.

Creswell, J. (2012). Educational research: planning, conducting, and evaluating quantitative and qualitative research. United States of America: Pearson Education.

Meltzer, D. E. (2002). The relationship between mathematics preparation and conceptual learning gains in physics: A possible “hidden variable” in diagnostic pretest scores. American journal of physics, 70(12): 1259-1268.

Suparno, P. (2013). Metodelogi Pembelajaran Fisika Kostruktivistik & Menyenangkan. Yogyakarta: Universitas Sanata Dharma.

BNSP. (2016). Salinan Lampiran Peraturan Menteri Pendidikan dan Kebudayaan No 22 Tahun 2016 tentang Standar Proses Pendidikan Dasar dan Menengah.

Supriadi, D. (2000). Anatomi Buku Sekolah di Indonesia. Yogyakarta: Adi Cita.

Krisnasanjaya, K., & Muliastuti, L. (1997). Telaah Kurikulum 1994 dan Buku Teks I. Jakarta: Departemen Pendidikan dan Kebudayaan.

Sulistyo, P. E., Suparmi, S., & Sarwanto, S. Pengembangan Modul Fisika Berbasis Interactive Demonstration Untuk Meningkatkan Keterampilan Berpikir Kritis Dan Penguasaan Konsep Siswa SMA/MA Pada Materi Mekanika Fluida. Inkuiri: Jurnal Pendidikan IPA, 7(3): 455-469.

Fakhrurrazi, F., Sajidan, S., & Karyanto, P. (2019). Keefektifan Penggunaan Modul Sistem Gerak pada Manusia Berbasis Inkuiri Interactive Demonstration untuk Memberdayakan Keterampilan Berpikir Analitis Siswa. Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan, 4(4): 478-483.

Santyasa, I. W. (2007). Model-model pembelajaran inovatif. Universitas Pendidikan Ganesha.

Al Husna, I. Y., Masykuri, M., & Muzzazinah, M. (2019). “Using Inquiry-Interactive Demonstration Learning to Enhance Students’ Learning Outcomes. International Journal of Education and Social Science Research, 2(6): 254-259.

Azizah, R., Yuliati, L., & Latifa, E. (2017). Kemampuan pemecahan masalah melalui pembelajaran interactive demonstration siswa kelas X SMA pada materi kalor. Jurnal Pendidikan Fisika dan Teknologi, 2(2): 55-60.

Jauhariyah, M. N. R., Zaitul, Z., & Indina, M. (2018, July). Learn Physics Using Interactive Demonstration to Reduce The Students' Misconceptions on Mechanical Wave. In Mathematics, Informatics, Science, and Education International Conference (MISEIC 2018). Atlantis Press.

Davoudi, M. (2005). Inference generation skill and text comprehension. The Reading Matrix, 5(1): 106-123.

Marzano, R. J. (2009). The art and science of teaching: Six steps to better vocabulary instruction. Educational leadership, 67(1): 83-84.

Elbro, C., & Buch-Iversen, I. (2013). Activation of background knowledge for inference making: Effects on reading comprehension. Scientific Studies of Reading, 17(6): 435-452.

Rose, C., & Nicholl, M. J. (2012). Accelerated Learning for the 21st Century. London: Judy Piatkus.

Jacobsen, D. A., Edgen, P., & Kauchak, D. (2009). Methods for Teaching: Promoting Student Learning in K-12 Classrooms, 8th Edition. New Jersey: Prentice Hall.

Abdi, A. (2014). The Effect of Inquiry-Based Learning Method on Students' Academic Achievement in Science Course. Universal journal of educational Research, 2(1): 37-41.




DOI: http://dx.doi.org/10.26737/jipf.v6i1.1840

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Itsna Yunida Al Husna, Mohammad Masykuri, Muzzazinah Muzzazinah

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher

Institute of Managing and Publishing of Scientific Journals
STKIP Singkawang

Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia

Website: http://journal.stkipsingkawang.ac.id/index.php/JIPF
Email: [email protected]

 


JIPF Indexed by:

 

Copyright (c) JIPF (Jurnal Ilmu Pendidikan Fisika)

ISSN 2477-8451 (Online) and ISSN 2477-5959 (Print)