Determination of Fluid Viscosity Coefficient Using jetAudio and Subtitle Edit

Haris Rosdianto, Emi Sulistri, Anis Nazihah Mat Daud


The purpose of this study is to produce an experimental design for determining the viscosity coefficient using jetAudio and Subtitle Edit software, and determining the value of the fluid viscosity coefficient by using this experimental design. In this study, the type of fluid used is packaged cooking oil, and the object used is a magnetic ball. The method proposed by the author to measure the travel time of the magnetic ball in cooking oil is by using the combination of coil sensors, jetAudio, and Subtitle Edit. JetAudio software will record magnetic induction traces as the magnetic ball passes the coils into audio format, Subtitle Edit software is used to determine travel time of the magnetic ball based on jetAudio recording data. The results of this study are jetAudio and Subtitle Edit can be used in fluid viscosity coefficient experiments. The value of the cooking oil viscosity coefficient obtained from this study is 0,561431096 Pa.s.


Viscosity Coefficient; Coil Sensors; jetAudio; Subtitle Edit

Full Text:

PDF (English)


Koretsky, M., Kelly, C., & Gummer, E. (2011). Student perceptions of learning in the laboratory: Comparison of industrially situated virtual laboratories to capstone physical laboratories. Journal of Engineering Education, 100(3): 540-573.

Rudyak, V. Y., Dimov, S. V., & Kuznetsov, V. V. (2013). On the dependence of the viscosity coefficient of nanofluids on particle size and temperature. Technical Physics Letters, 39(9): 779-782.

Greaves, M. (2012). Pressure viscosity coefficients and traction properties of synthetic lubricants for wind turbine gear systems. Lubrication Science, 24(2): 75-83.

Bair, S. (2013). Comments on “pressure–viscosity coefficient of vegetable oils” by Biresaw and Bantchev. Tribology Letters, 52(2): 351-353.

Akimoto, H., Nagai, K., & Sakurai, N. (2012). Viscosity measurement by the free vibrations of homogeneous viscoelastic sphere. Journal of Applied Mechanics, 79(4): 041002.

Romero, C. M., Rodríguez, D. M., Ribeiro, A. C., & Esteso, M. A. (2017). Effect of temperature on the partial molar volume, isentropic compressibility and viscosity of DL-2-aminobutyric acid in water and in aqueous sodium chloride solutions. The Journal of Chemical Thermodynamics, 104: 274-280.

Shanti. M. R. S., (2014). Pembuatan Media Pembelajaran Pengukuran Viskositas Dengan Menggunakan Viskometer Dua Kumparan Dan Freewave3. Jurnal Pendidikan Fisika Indonesia, 10(1): 28-35.

Jóźwiak, M., Tyczyńska, M., & Bald, A. (2013). Viscosity of Urea in the Mixture of N, N-Dimethylformamide and Water. Journal of Chemical & Engineering Data, 58(2): 217-224.

Patil, P. D., Shaikh, V. R., Gupta, G. R., Hundiwale, D. G., Borse, A. U., & Patil, K. J. (2016). Studies of viscosity coefficient and expansivity properties of aqueous solutions of ethylene glycol and polyethylene glycols at 293.15, 298.15 and 303.15 K and at ambient pressure. Journal of Solution Chemistry, 45(6): 947-969.

Mannarelli, M., Manuel, C., & Tolos, L. (2013). Phonon contribution to the shear viscosity of a superfluid Fermi gas in the unitarity limit. Annals of Physics, 336: 12-35.

Siddiqui, N., & Ahmad, A. (2013). A study on viscosity, surface tension and volume flow rate of some edible and medicinal oils. Int. J. Sci. Environ. Technol, 2: 1318-1326.

Paredes, X., Fandiño, O., Pensado, A. S., Comuñas, M. J. P., & Fernández, J. (2012). Pressure–viscosity coefficients for polyalkylene glycol oils and other ester or ionic lubricants. Tribology Letters, 45(1): 89-100.

Hantoro, B., & Suharno. (2014). Menyelidiki Hubungan Kecepatan Terminal Dan Viskositas Zat Cair dengan Video Analisis Tracker . Prosiding Pertemuan Ilmiah XXVIII HFI Jateng & DIY, Yogyakarta, 26 April 2014: 35-37.

Mariani. F, et al. (2015). Penerapan Analisis Video Tracker dalam Pembelajaran Fisika SMA Untuk Menentukan Nilai Koefisien Viskositas Fluida. Prosiding Simposium Nasional Inovasi dan Pembelajaran Sains 2015 (SNIPS 2015): 333-336.

Llovell, F., Marcos, R. M., & Vega, L. F. (2013). Free-volume theory coupled with soft-SAFT for viscosity calculations: comparison with molecular simulation and experimental data. The Journal of Physical Chemistry B, 117(27): 8159-8171.

Price, H. C., Murray, B. J., Mattsson, J., O'sullivan, D., Wilson, T. W., Baustian, K. J., & Benning, L. G. (2014). Quantifying water diffusion in high-viscosity and glassy aqueous solutions using a Raman isotope tracer method. Atmospheric Chemistry and Physics, 14(8): 3817-3830.

Ghaderi, F., Ghaderi, A. H., Najafi, B., & Ghaderi, N. (2013). Viscosity prediction by computational method and artificial neural network approach: The case of six refrigerants. The Journal of Supercritical Fluids, 81: 67-78.

Koralewski, J. (2011). Influence of hydraulic oil viscosity on the volumetric losses in a variable capacity piston pump. Polish Maritime Research, 18(3): 55-65.

Cidade, M. T., Fernández, M., & Santamaria, A. (2012). Pressure–volume–temperature results and pressure dependency on the viscosity of three liquid crystalline cellulose derivatives. Liquid Crystals, 39(1): 115-120.

Oghaz, N. M., Ghiamati, E., Haghighi, B., Nasrabad, A. E., Papari, M. M., & Bamdad, M. (2012). A new approach to estimate viscosity in dilute and dense pure fluid states by using generalized friction theory based on pair interaction potential energy functions. Journal of Molecular Liquids, 165: 55-62.

Prasad, K. V., Pal, D., Umesh, V., & Rao, N. P. (2010). The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet. Communications in Nonlinear Science and Numerical Simulation, 15(2): 331-344.

Ramadhan, D., Serevina, V., & Raihanati. (2016) Pengembangan Alat Praktikum Viskometer Metode Bola Jatuh Bebas Berbasis Sensor Efek Hall UGN3503 sebagai Media Pembelajaran Fisika. Prosiding Seminar Nasional Fisika (E-Journal) SNF2016, 5(1): 7-10.

Mulyono, S., & Agus, S. (2010). Kumpulan Software Pilihan Paling Dicari. MediaKita, 2008.

Lynch, N. (2010). An excellent app to edit subtitles.

Vong, S. W., Yang, T., & Zhu, C. (2003). Compressible Navier–Stokes equations with degenerate viscosity coefficient and vacuum (II). Journal of Differential Equations, 192(2): 475-501.

Lei, Z., & Lin, F. H. (2011). Global mild solutions of Navier‐Stokes equations. Communications on Pure and Applied Mathematics, 64(9): 1297-1304.



  • There are currently no refbacks.

Copyright (c) 2019 Haris Rosdianto, Emi Sulistri, Anis Nazihah Mat Daud

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Institute of Managing and Publishing of Scientific Journals
STKIP Singkawang

Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia

Email: [email protected]


JIPF Indexed by:


Copyright (c) JIPF (Jurnal Ilmu Pendidikan Fisika)

ISSN 2477-8451 (Online) and ISSN 2477-5959 (Print)