The "VLOKS" Geometrical Thinking Model of Students in Relation to Meaningful Learning Processes and Teacher Pedagogy

Bistari Bistari, Rustam Rustam, Tomo Tomo, Marlinda Marlinda

Abstract


Understanding geometry is an essential aspect of mathematics learning as it plays a central role in developing students’ spatial, visual, and logical reasoning abilities. However, previous studies indicate that students often encounter difficulties in comprehending geometric concepts deeply due to learning approaches that remain largely procedural and insufficiently emphasize visualization or conceptual connections. This study aims to explore students’ geometric thinking profiles through the VLOKS model (Visual, Literational, Operational, Correlational, Spatial), examine their perceptions of meaningful learning, and analyze the relationship between geometric thinking abilities and teachers’ pedagogical competence. A mixed-methods approach was employed using a sequential explanatory design, beginning with quantitative data collection through a VLOKS-based geometric thinking test and a meaningful learning questionnaire, followed by qualitative data through classroom observations of teachers’ pedagogy and in-depth interviews. The research subjects consisted of 33 tenth-grade students at SMAN 7 Pontianak and 31 students at SMAN 2 Teluk Keramat, along with mathematics teachers applying meaningful learning approaches. The findings reveal that students at SMAN 7 Pontianak achieved a moderate average score (70.4%), with their strongest performance in the literational dimension (79%), while their weaknesses were found in the operational (67%) and correlational dimensions, partly due to technical aspects of the test items. In contrast, students at SMAN 2 Teluk Keramat attained a relatively low average score (31.6%) across all VLOKS dimensions without significant dominance in any particular aspect. Qualitative data further indicate that teachers in both schools attempted to implement meaningful learning through contextual approaches, problem-based learning, and remedial strategies, though the implementation proved more effective at SMAN 7 than at SMAN 2. This study concludes that integrating the VLOKS model, meaningful learning processes, and teachers’ pedagogical competence significantly strengthens students’ understanding of geometry, highlighting the need for contextual, reflective, and adaptive instructional designs aligned with students’ thinking processes within the framework of the Merdeka Curriculum.

Model Berpikir Geometris “VLOKS” Siswa Dikaitkan Dengan Proses Pembelajaran Bermakna Dan Pedagogis Guru


ABSTRAK
Pemahaman terhadap geometri merupakan aspek penting dalam pembelajaran matematika karena berperan dalam mengembangkan kemampuan spasial, visual, serta berpikir logis siswa, namun berbagai penelitian menunjukkan bahwa siswa kerap mengalami kesulitan dalam memahami konsep-konsep geometri secara mendalam akibat pendekatan pembelajaran yang masih dominan bersifat prosedural dan kurang menekankan visualisasi maupun koneksi antar konsep. Penelitian ini bertujuan untuk mengeksplorasi profil berpikir geometris siswa melalui model VLOKS (Visual, Literasional, Operasional, Korelasional, Spasial), mengkaji persepsi siswa terhadap pembelajaran bermakna, serta menganalisis hubungan antara kemampuan berpikir geometris dengan kompetensi pedagogis guru. Metode penelitian yang digunakan adalah mixed methods dengan desain eksplanatoris sekuensial, dimulai dari pengumpulan data kuantitatif melalui tes kemampuan berpikir geometris berbasis VLOKS dan kuesioner pembelajaran bermakna, kemudian dilanjutkan dengan data kualitatif berupa observasi pedagogis guru dan wawancara mendalam. Subjek penelitian adalah siswa kelas X di SMAN 7 Pontianak (33 siswa) dan SMAN 2 Teluk Keramat (31 siswa), serta guru matematika yang menerapkan pendekatan pembelajaran bermakna. Hasil penelitian menunjukkan bahwa siswa SMAN 7 Pontianak memiliki capaian rata-rata cukup baik (70,4%), dengan kekuatan utama pada dimensi literasional (79%), sementara kelemahan terdapat pada dimensi operasional (67%) dan korelasional akibat faktor teknis soal. Sebaliknya, siswa SMAN 2 Teluk Keramat memperoleh rata-rata skor rendah (31,6%) pada seluruh dimensi VLOKS tanpa ada dominasi yang signifikan. Data kualitatif mengungkap bahwa guru di kedua sekolah telah berupaya menerapkan pembelajaran bermakna melalui pendekatan kontekstual, problem-based learning, serta strategi remedial, namun implementasinya lebih efektif di SMAN 7 dibandingkan di SMAN 2 Teluk Keramat. Simpulan penelitian ini menegaskan bahwa integrasi antara VLOKS, pembelajaran bermakna, dan kompetensi pedagogis guru berkontribusi penting terhadap penguatan pemahaman geometri siswa, serta menekankan perlunya pengembangan desain pembelajaran yang kontekstual, reflektif, dan adaptif terhadap cara berpikir siswa dalam kerangka Kurikulum Merdeka.

Kata Kunci :
Model Berpikir Geometris “VLOKS”; Proses Pembelajaran Bermakna; Pedagogis Guru


Keywords


Geometrical Thinking Model “VLOKS”; Meaningful Learning Process; Teacher Pedagogy

Full Text:

PDF

References


Arcavi, A. (2021). The role of visual representations in the learning of mathematics. In Goldin, G. & Hannula, M. (Eds.), Mathematics and emotions: A framework for understanding student motivation. 123–137. Springer. https://doi.org/10.1007/978-3-030-75445-5_9

Ausubel, D. P. (1968). Educational psychology: a cognitive view. New York: Holt, Rinehart and Winston.

Bistari, I. (2023). Kemampuan berpikir geometris: BIS-VLOKS. Pontianak: Bistari Publisher.

Blown, E. J., & Bryce, T. G. K. (2023). Context-based learning: A survey of contextual indicators and their impact on meaningful learning. Frontiers in Education. https://doi.org/10.3389/ feduc.2023.1210968

Boaler, J. (2022). Mathematical mindsets: Unleashing students' potential through creative math, inspiring messages and innovative teaching. Jossey-Bass.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.

Bryce, T. G. K., & Blown, E. J. (2023). Ausubel’s meaningful learning re-visited. Current Psychology. https://doi.org/10.1007/s12144-023-04440-4

Çakıroğlu, Ü., & Yıldırım, T. P. (2020). The impact of spatial ability on geometry problem-solving performance. Educational Studies in Mathematics, 104(2), 179–198. https://doi.org/10.1007/s10649-020-09932-6

Cañete, R. (2020). Effects of social interactive - constructivist approach in teaching mathematics. IJRDO - Journal of Mathematics, 6(5), 01-40. https://doi.org/10.53555/m. v6i5.3703​:contentReference[oaicite:2]{index=2}

Clements, D. H., & Sarama, J. (2021). Learning and teaching early math: The learning trajectories approach (3rd ed.). Routledge. https://doi.org/10.4324/9781003023240

Creswell, J. W. (2015). A concise introduction to mixed methods research. SAGE Publications.

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). Thousand Oaks, CA: Sage.

Duval, R. (1999). Geometry and visualization: Learning difficulties in understanding and using figures. Mediterranean Journal for Research in Mathematics Education, 1(2), 1-12.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103–131. https://doi.org/ 10.1007/s10649-006-0400-z

Fennema, E., & Carpenter, T. P. (2020). Children’s mathematics: Cognitively guided instruction (2nd ed.). Heinemann.

Fischbein, E. (2022). Intuition in science and mathematics: An educational approach. Springer. https://doi.org/10.1007/978-3-030-83698-1

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). How to design and evaluate research in education (8th ed.). New York: McGraw-Hill.

Hamidah, & Kusuma, J. W. (2020). Analysis of student learning styles and geometry thinking skills: During the covid-19 pandemic. Journal of Physics: Conference Series, 1657(1), 012036.https://doi.org/10.1088/1742-6596/1657/1/012036IOPscience+1ResearchGate+1

Helaluddin, Fitriyyah, D., Rante, S. V. N., Tulak, H., Ulfah, S. M., & Wijaya, H. (2023). Gen z students perception of ideal learning in post-pandemic: a phenomenological study from indonesia. International Journal of Educational Methodology, 9(2), 423–434. https://doi.org/10.12973/ijem.9.2.423

Herawati, H., & Sidik, G. S. (2023). Problem-based learning to enhance pupils’ conceptual understanding in geometry. International Journal of Advance Research in Mathematics Education, 1(1), 26–35. Retrieved from https://ejournal.papanda.org/index.php/ijarme/ article/view/469Jurnal Papanda

Indrapangastuti, D., Wijayanti, M. D., & Wahyudi, A. B. E. (2024). Enhancing students’ geometry learning outcomes and critical thinking skills through the implementation of problem based learning model. AL-ISHLAH: Jurnal Pendidikan, 16(2). Retrieved from https://journal.staihubbulwathan.id/index.php/alishlah/article/view/4740Journal STAI Hub Bulwathan

Kemendikbudristek. (2022). Panduan implementasi kurikulum merdeka. Jakarta: Kemendik-budristek.

Lasmawan, I. W., & Budiarta, I. W. (2025). Vygotsky's zone of

proximal development and the students' progress in learning: a heutagogical bibliographical review. Jurnal Pendidikan Indonesia, 5(1), 545–556. https://doi.org/10.23887/jpi.v5i1.545

Lastriani, K. S., & Safa’atullah, M. F. (2019). Mathematical representation ability based on learning styles of students on Anchored Instruction assisted Problem Card. Unnes Journal of Mathematics Education, 8(3), 181–187. https://doi.org/10.15294/ujme. v8i3.32638​ :contentReference[oaicite:13]{index=13}

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage.

Lutfi, M. K., & Kusumastuti, F. A. (2024). The model of geometry learning with spatial skills features: is it possible?. Retrieved from https://www.researchgate.net/publication/ 374069118The_Model_of_Geometry_Learning_With_Spatial_Skills_Features_Is_It_Possible​:contentReference[oaicite:42]{index=42}

NCTM. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

Ng, O. L., & Sinclair, N. (2020). Multimodality in geometry learning: A case for sensory aesthetics. Educational Studies in Mathematics, 104(2), 211–228. https://doi.org/10.1007/ s10649-020-09931-6

Nyimbili, F., & Nyimbili, L. (2024). Types of purposive sampling techniques with their examples and application in qualitative research studies. British Journal of Multidisciplinary and Advanced Studies, 5(1), 90–99.ResearchGate

OECD. (2020). Pisa 2018 results (volume i): what students know and can do. Paris: OECD Publishing. https://doi.org/10.1787/5f07c754-en

Patton, M. Q. (2015). Qualitative research and evaluation methods (4th ed.). Thousand Oaks, CA: Sage.

Permendiknas. (2007). Peraturan menteri pendidikan nasional republik indonesia nomor 16 tahun 2007 tentang standar kualifikasi akademik dan kompetensi guru.

Presmeg, N. C. (2021). Visualisation and mathematical thinking. In Kaiser, G. (Ed.), First International Handbook of Mathematics Education (2nd ed., pp. 585–608). Springer. https://doi.org/10.1007/978-3-030-15789-8_19

Sudirman, S., Rodríguez-Nieto, C. A., Dhlamini, Z. B., & Andriani, M. (2023). Ways of thinking 3d geometry: exploratory case study in junior high school students. Retrieved from https://www.researchgate.net/publication/371362317_Ways_of_Thinking_3D_Geometry_Exploratory_Case_Study_in_Junior_High_School_Students​:contentReference[oaicite:41]{index=41}

Tall, D. (2013). How humans learn to think mathematically: Exploring the three worlds of mathematics. Cambridge University Press.

Tall, D. (2019). Advanced mathematical thinking. Springer. https://doi.org/10.1007/978-1-4419-8110-4

Trimurtini, T., Nugraheni, N., Waluya, B., & Sari, E. F. (2024). Geometric thinking program to enhance problem-solving skills of primary school teacher candidates. Research and Development in Education, 4(2), 774–787. https://doi.org/10.22219/raden. v4i2.35310​:contentReference[oaicite:40]{index=40}

Upu, H., & Bustang. (2021). Constructivism versus cognitive load theory: in search for an effective mathematics teaching. Retrieved from https://arxiv.org/abs/2108.04796

Utkun, A., & Ubuz, B. (2022). Examining secondary students’ difficulties in reasoning geometrically with multiple representations. International Journal of Mathematical Education in Science and Technology, 53(5), 1287–1305. https://doi.org/10. 1080/0020739X.2021.1938004

Van Hiele, P. (1986). Structur e and insight: A theory of mathematics education. Academic Press.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.

Zazkis, R., & Liljedahl, P. (2020). Understanding and developing mathematical thinking. Springer. https://doi.org/10.1007/978-3-030-27552-3




DOI: http://dx.doi.org/10.26737/jpmi.v11i1.7876

Refbacks

  • There are currently no refbacks.


Published by:

Institute for Managing and Publishing of Scientific Journal

STKIP Singkawang


Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia

Website: https://journal.stkipsingkawang.ac.id/index.php/JPMI/index

Email: [email protected]

JPMI Indexed by:

     

Creative Commons License

JPMI (Jurnal Pendidikan Matematika Indonesia) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.