Acceptance Factors of Generative AI in EFL Teaching: A Pedagogical Perspective

Talal Alasmari

Abstract


The emergence of generative artificial intelligence (GenAI) has brought abundant potentials and challenges to the educational sector. This study explores the acceptance and adoption of GenAI in English language and its pedagogical affordability for EFL instructors in tertiary level institutions in the Kingdom of Saudi Arabia. An exploratory sequential mixed method was utilized in this study to gain in-depth insights into the quantitative findings. The first quantitative phase recruited 256 EFL instructors in Saudi Arabia while the follow-up qualitative phase incorporated 17 interviewees. The findings of this study indicate that anthropomorphism, trust, ethics and regulations, and pedagogical affordability are significant determinants of instructors’ acceptance  of GenAI. Conversely, instructors’ acceptance was not significantly influenced by communication capability of GenAI. Yet, there was no evidence of significant differences in GenAI acceptance or adoption due to demographic variables such as gender, age, and degree. The pedagogical affordances of GenAI appears to be the most acceptance factor specifically the productivity and efficiency that GenAI afford for instructors. The study recommends establishing ethical guidelines and embracing transparency and accountability to maintain academic integrity.


Keywords


Generative AI; acceptance; adoption; language teaching; EFL; Saudi Arabia

Full Text:

PDF

References


Ab Hamid, M. R., Sami, W., & Mohmad Sidek, M. H. (2017). Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion. Journal of Physics. Conference Series, 890, 012163. https://doi.org/10.1088/1742-6596/890/1/012163

Akhtar, F. (2023). Regulating Artificial Intelligence for a Safer and More Ethical Future: A Review of the EU’s AI Act. Available at SSRN 4560224. https://dx.doi.org/10.2139/ssrn.4560224

Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., bin Saleh, K., Alowais, S. A., Alshaya, O. A., Rahman, I., Al Yami, M. S., & Albekairy, A. M. (2023). The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Research in Social & Administrative Pharmacy: RSAP, 19(8), 1236–1242. https://doi.org/10.1016/j.sapharm.2023.05.016

Alshahrani, A. (2023). The impact of ChatGPT on blended learning: Current trends and future research directions. International Journal of Data and Network Science, 7(4), 2029-2040. http://dx.doi.org/10.5267/j.ijdns.2023.6.010

Alsharhan, A., Al-Emran, M., & Shaalan, K. (2023). Chatbot adoption: A multiperspective systematic review and future research agenda. IEEE Transactions on Engineering Management, 1–13. https://doi.org/10.1109/tem.2023.3298360

An, X., Chai, C. S., Li, Y., Zhou, Y., Shen, X., Zheng, C., & Chen, M. (2023). Modeling English teachers’ behavioral intention to use artificial intelligence in middle schools. Education and Information Technologies, 28(5), 5187–5208. https://doi.org/10.1007/s10639-022-11286-z

Bahroun, Z., Anane, C., Ahmed, V., & Zacca, A. (2023). Transforming education: A comprehensive review of generative artificial intelligence in educational settings through bibliometric and content analysis. Sustainability, 15(17), 12983. https://doi.org/10.3390/su151712983

Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. https://doi.org/10.61969/jai.1337500

Blake, R. J., & Guillén, G. (2020). Brave new digital classroom: Technology and foreign language learning, third edition. Georgetown University Press.

Canzonetta, J., & Kannan, V. (2016). Globalizing plagiarism & writing assessment: a case study of Turnitin. Journal of Writing Assessment, 9(2). https://escholarship.org/uc/item/5vq519dr

Cardon, P., Fleischmann, C., Aritz, J., Logemann, M., & Heidewald, J. (2023). The challenges and opportunities of AI-assisted writing: Developing AI literacy for the AI age. Business and Professional Communication Quarterly, 86(3), 257–295. https://doi.org/10.1177/23294906231176517

Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. International Journal of Educational Technology in Higher Education, 20(1), 38. https://doi.org/10.1186/s41239-023-00408-3

Chounta, I.-A., Bardone, E., Raudsep, A., & Pedaste, M. (2022). Exploring teachers’ perceptions of artificial intelligence as a tool to support their practice in Estonian K-12 education. International Journal of Artificial Intelligence in Education, 32(3), 725–755. https://doi.org/10.1007/s40593-021-00243-5

Crompton, H., Edmett, A., Ichaporia, N., & Burke, D. (2024). AI and English language teaching: Affordances and challenges. British Journal of Educational Technology (BJET). https://doi.org/10.1111/bjet.13460

Dai, Y., Liu, A., & Lim, C. P. (2023). Reconceptualizing ChatGPT and generative AI as a student-driven innovation in higher education. Procedia CIRP, 119, 84–90. https://doi.org/10.1016/j.procir.2023.05.002

Divekar, R. R. (2020). AI enabled foreign language immersion: Technology and method to acquire foreign languages with AI in immersive virtual worlds. [Doctoral dissertation, Rensselaer Polytechnic Institute - Troy, New York]. ProQuest Dissertations and Theses Global.

Drew, S. A. W., & Wallis, J. L. (2014). The use of Appreciative Inquiry in the Practices of Large-Scale Organisational Change a Review and Critique: A review and critique. Journal of General Management, 39(4), 3–26. https://doi.org/10.1177/030630701403900402

Du, X., Zhao, X., Wu, C.-H., & Feng, K. (2021). Functionality, emotion, and acceptance of artificial intelligence virtual assistants: The moderating effect of social norms. Journal of global information management, 30(7), 1–21. https://doi.org/10.4018/jgim.290418

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., … Wright, R. (2023). Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71(102642), 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642

Farrelly, T., & Baker, N. (2023). Generative Artificial Intelligence: Implications and Considerations for Higher Education Practice. Education Sciences, 13(11), 1109. https://doi.org/10.3390/educsci13111109

Garrison, D. R. (2016). E-learning in the 21st century: A community of inquiry framework for research and practice (3rd ed.). Routledge.

Ghafar, Z. N. (2023). ChatGPT: a New Tool to Improve Teaching and Evaluation of Second and Foreign Languages a Review of ChatGPT: the Future of Education. International Journal of Applied Research and Sustainable Sciences, 1(2), 73–86. https://doi.org/10.59890/ijarss.v1i2.392

Hadi, M. U., Tashi, Q. al, Qureshi, R., Shah, A., Muneer, A., Irfan, M., Zafar, A., Shaikh, M. B., Akhtar, N., Wu, J., & Mirjalili, S. (2023). Large Language Models: A comprehensive survey of its applications, challenges, limitations, and future prospects. https://doi.org/10.36227/techrxiv.23589741.v4

Hair, J. F., Jr Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learning.

Hair, J. F., Jr, Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021b). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook (1st ed.). Springer Nature.

Hair, J. F., Jr, Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/ebr-10-2013-0128

Hair, J., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021a). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). SAGE Publications.

Huang, W., Hew, K. F., & Fryer, L. K. (2022). Chatbots for language learning—Are they really useful? A systematic review of chatbot‐supported language learning. Journal of Computer Assisted Learning, 38(1), 237–257. https://doi.org/10.1111/jcal.12610

Ifenthaler, D. (2022). Automated Essay Scoring Systems. In Handbook of Open, Distance and Digital Education (pp. 1–15). Springer Nature Singapore.

Ifenthaler, D. (2022). Automated essay scoring systems. In Handbook of open, distance and digital education (pp. 1-15). Singapore: Springer Nature Singapore.

Kelly, S., Kaye, S.-A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77(101925), 101925. https://doi.org/10.1016/j.tele.2022.101925

Kirschner, P., Strijbos, J.-W., Kreijns, K., & Beers, P. J. (2004). Designing electronic collaborative learning environments. Educational Technology Research and Development: ETR & D, 52(3), 47–66. https://doi.org/10.1007/bf02504675

Kohnke, L., Moorhouse, B. L., & Zou, D. (2023b). Exploring generative artificial intelligence preparedness among university language instructors: A case study. Computers and Education: Artificial Intelligence, 5(100156), 100156. https://doi.org/10.1016/j.caeai.2023.100156

Lim, W. M., Gunasekara, A., Pallant, J. L., Pallant, J. I., & Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators. The International Journal of Management Education, 21(2), 100790. https://doi.org/10.1016/j.ijme.2023.100790

Ma, X., & Huo, Y. (2023). Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework. Technology in Society, 75(102362), 102362. https://doi.org/10.1016/j.techsoc.2023.102362

Mohammadkarimi, E. (2023). Teachers’ reflections on academic dishonesty in EFL students’ writings in the era of artificial intelligence. Journal of Applied Learning & Teaching, 6(2), 105–113. https://doi.org/10.37074/jalt.2023.6.2.10

Mohd Dzin, N. H., & Lay, Y. F. (2021). Validity and reliability of adapted self-efficacy scales in Malaysian context using PLS-SEM approach. Education Sciences, 11(11), 676. https://doi.org/10.3390/educsci11110676

Nguyen, T. T. H. (2023). EFL teachers’ perspectives toward the use of ChatGPT in writing classes: A case study at Van Lang University. International Journal of Language Instruction, 2(3), 1–47. https://doi.org/10.54855/ijli.23231

Novozhilova, E., Mays, K., Paik, S., & Katz, J. E. (2024). More capable, less benevolent: Trust perceptions of AI systems across societal contexts. Machine Learning and Knowledge Extraction, 6(1), 342–366. https://doi.org/10.3390/make6010017

Ofosu-Ampong, K., Acheampong, B., Kevor, M.-O., & Amankwah-Sarfo, F. (2023). Acceptance of artificial intelligence (ChatGPT) in education: Trust, innovativeness and psychological need of students. Information and Knowledge Management. https://doi.org/10.7176/ikm/13-4-03

Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development (Working Paper No. ED-2019/WS/8). The United Nations Educational, Scientific and Cultural Organization (UNESCO). https://unesdoc.unesco.org/ark:/48223/pf0000366994

Prasad Agrawal, K. (2023). Towards adoption of generative AI in organizational settings. Journal of Computer Information Systems, 1–16. https://doi.org/10.1080/08874417.2023.2240744

Prather, J., Denny, P., Leinonen, J., Becker, B. A., Albluwi, I., Craig, M., Keuning, H., Kiesler, N., Kohn, T., Luxton-Reilly, A., MacNeil, S., Petersen, A., Pettit, R., Reeves, B. N., & Savelka, J. (2023). The robots are here: Navigating the generative AI revolution in computing education. Proceedings of the 2023 Working Group Reports on Innovation and Technology in Computer Science Education (pp. 108–159). Association for Computing Machinery. https://doi.org/10.1145/3623762.3633499

Qin, F., Li, K., & Yan, J. (2020). Understanding user trust in artificial intelligence‐based educational systems: Evidence from China. British Journal of Educational Technology (BJET), 51(5), 1693–1710. https://doi.org/10.1111/bjet.12994

Rai, A. (2020). Explainable AI: from black box to glass box. Journal of the Academy of Marketing Science, 48(1), 137–141. https://doi.org/10.1007/s11747-019-00710-5

Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J., & Gonzalez-Rodriguez, M. (2023). Empowering Education with Generative Artificial Intelligence Tools: Approach with an Instructional Design Matrix. Sustainability, 15(15), 11524. https://doi.org/10.3390/su151511524

Salovaara, A., & Tamminen, S. (2009). Acceptance or appropriation? A design-oriented critique of technology acceptance models. In Future Interaction Design II (pp. 157–173). Springer London.

Sayers, D., Sousa-Silva, R., Höhn, S., Ahmedi, L., Allkivi-Metsoja, K., Anastasiou, D., Beňuš, Š., Bowker, L., Bytyçi, E., Catala, A., Çepani, A., Chacón-Beltrán, R., Dadi, S., Dalipi, F., Despotovic, V., Doczekalska, A., Drude, S., Fort, K., Fuchs, R., … Yildirim Yayilgan, S. (2021). The Dawn of the Human-Machine Era: A forecast of new and emerging language technologies (University of Jyväskylä, Ed.). Open Science Centre, University of Jyväskylä.

Sharadgah, T. A., & Sa’di, R. A. (2022). A systematic review of research on the use of artificial intelligence in English language teaching and learning (2015-2021): What are the current effects? Journal of Information Technology Education Research, 21, 337–377. https://doi.org/10.28945/4999

Sharples, M. (2022). Automated essay writing: An AIED opinion. International Journal of Artificial Intelligence in Education, 32(4), 1119–1126. https://doi.org/10.1007/s40593-022-00300-7

Silva, P. (2015). Davis’ Technology Acceptance Model (TAM) (1989). In Information Seeking Behavior and Technology Adoption (pp. 205–219). IGI Global.

Smolansky, A., Cram, A., Raduescu, C., Zeivots, S., Huber, E., & Kizilcec, R. F. (2023, July). Educator and Student Perspectives on the Impact of Generative AI on Assessments in Higher Education. In Proceedings of the Tenth ACM Conference on Learning@ Scale (pp. 378-382). Association for Computing Machinery. https://doi.org/10.1145/3573051.3596191

UNESCO. (2021). AI and education: guidance for policy-makers. UNESCO. https://doi.org/10.54675/pcsp7350

UNESCO. (2023). Guidance for generative AI in education and research. UNESCO. https://doi.org/10.54675/ewzm9535

Vaccino-Salvadore, S. (2023). Exploring the ethical dimensions of using ChatGPT in language learning and beyond. Languages, 8(3), 191. https://doi.org/10.3390/languages8030191

Vaccino-Salvadore, S. (2023). Exploring the ethical dimensions of using ChatGPT in language learning and beyond. Languages, 8(3), 191. https://doi.org/10.3390/languages8030191

Valente, T. W. (2005). Network Models and Methods for Studying the Diffusion of Innovations. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and Methods in Social Network Analysis (pp. 98–116). chapter, Cambridge: Cambridge University Press.

Venkatesh, Morris, Davis, & Davis. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3), 425. https://doi.org/10.2307/30036540

Wang, T., Lund, B. D., Marengo, A., Pagano, A., Mannuru, N. R., Teel, Z. A., & Pange, J. (2023). Exploring the Potential Impact of Artificial Intelligence (AI) on International Students in Higher Education: Generative AI, Chatbots, Analytics, and International Student Success. Applied Sciences, 13(11), 6716. https://doi.org/10.3390/app13116716

Yang, R., & Wibowo, S. (2022). User trust in artificial intelligence: A comprehensive conceptual framework. Electronic Markets, 32(4), 2053–2077. https://doi.org/10.1007/s12525-022-00592-6

Yilmaz, R., & Karaoglan Yilmaz, F. G. (2023). The effect of generative artificial intelligence (AI)-based tool use on students’ computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 4(100147), 100147. https://doi.org/10.1016/j.caeai.2023.100147




DOI: http://dx.doi.org/10.26737/jetl.v9i2.6261

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Published by:

Institute of Managing and Publishing of Scientific Journals STKIP Singkawang

Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) Singkawang

Address : STKIP Singkawang, Jalan STKIP - Kelurahan Naram Singkawang, Kalimantan Barat, INDONESIA, 79251
No. Telp.   : +62562 420 0344
No. Fax.    : +62562 420 0584

JETL (Journal of  Education, Teaching, and Learning)

e-ISSN : 2477-8478

p-ISSN : 2477-5924

Editor in Chief Contact: [email protected] / Wa: +6282142072788

Publisher Contact: [email protected] / Wa: +6282142072788

Management Tools

     

JETL Indexed by:

  

 

  Creative Commons License

JETL (Journal of Education, Teaching, and Learning) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.