The Effectiveness of e-Assessment in Improving the Quality of Learning and the Quality of Assessment on Financial Accounting Learning: A Literature Review
Abstract
Keywords
Full Text:
PDFReferences
Al Ali, A. I., S, S. R., & Khedr, A. M. (2024). Enhancing financial distress prediction through integrated Chinese Whisper clustering and federated learning. Journal of Open Innovation: Technology, Market, and Complexity, 10(3), 100344. https://doi.org/https://doi.org/10.1016/j.joitmc.2024.100344
Avenali, A., Daraio, C., Di Leo, S., & Wolszczak-Derlacz, J. (2024). Heterogeneity of national accounting systems, world-class universities and financial resources: What are the links? Journal of Informetrics, 18(2), 101502. https://doi.org/https://doi.org/10.1016/j.joi.2024.101502
Balmaseda, V., Coronado, M., & de Cadenas-Santiago, G. (2023). Predicting systemic risk in financial systems using Deep Graph Learning. Intelligent Systems with Applications, 19, 200240. https://doi.org/https://doi.org/10.1016/j.iswa.2023.200240
Bitetto, A., Cerchiello, P., & Mertzanis, C. (2023). Measuring financial soundness around the world: A machine learning approach. International Review of Financial Analysis, 85, 102451. https://doi.org/https://doi.org/10.1016/j.irfa.2022.102451
Cannistrà, M., De Beckker, K., Agasisti, T., Amagir, A., Põder, K., Vartiak, L., & De Witte, K. (2024). The impact of an online game-based financial education course: Multi-country experimental evidence. Journal of Comparative Economics. https://doi.org/https://doi.org/10.1016/j.jce.2024.08.001
Che, W., Wang, Z., Jiang, C., & Abedin, M. Z. (2024). Predicting financial distress using multimodal data: An attentive and regularized deep learning method. Information Processing & Management, 61(4), 103703. https://doi.org/https://doi.org/10.1016/j.ipm.2024.103703
Duan, W., Hu, N., & Xue, F. (2024). The information content of financial statement fraud risk: An ensemble learning approach. Decision Support Systems, 182, 114231. https://doi.org/https://doi.org/10.1016/j.dss.2024.114231
García-Méndez, S., de Arriba-Pérez, F., González-González, J., & González-Castaño, F. J. (2024). Explainable assessment of financial experts’ credibility by classifying social media forecasts and checking the predictions with actual market data. Expert Systems with Applications, 255, 124515. https://doi.org/https://doi.org/10.1016/j.eswa.2024.124515
Giraldo, C., Giraldo, I., Gomez-Gonzalez, J. E., & Uribe, J. M. (2024). Financial integration and banking stability: A post-global crisis assessment. Economic Modelling, 139, 106835. https://doi.org/https://doi.org/10.1016/j.econmod.2024.106835
Gu, X., Mamon, R., & Duprey, T. (2024). Interfacing learning methods for anomaly detection in multi-country financial stress indicators. Knowledge-Based Systems, 294, 111712. https://doi.org/https://doi.org/10.1016/j.knosys.2024.111712
Gu, Z., Lv, J., Wu, B., Hu, Z., & Yu, X. (2024). Credit risk assessment of small and micro enterprise based on machine learning. Heliyon, 10(5), e27096. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e27096
Kang, M., Templeton, G. F., Kwak, D.-H., & Um, S. (2024). Development of an AI framework using neural process continuous reinforcement learning to optimize highly volatile financial portfolios. Knowledge-Based Systems, 300, 112017. https://doi.org/https://doi.org/10.1016/j.knosys.2024.112017
Kim, H. Il, Kim, D., Mahdian, M., Salamattalab, M. M., Bateni, S. M., & Noori, R. (2024). Incorporation of water quality index models with machine learning-based techniques for real-time assessment of aquatic ecosystems. Environmental Pollution, 355, 124242. https://doi.org/https://doi.org/10.1016/j.envpol.2024.124242
Kim, O., & Rosacker, R. E. (2024). Academic achievement in the financial accounting course: COVID19 impact within the Diversity, Equity, Inclusion and Belonging (DEIB) framework. Journal of Accounting Education, 68, 100915. https://doi.org/https://doi.org/10.1016/j.jaccedu.2024.100915
Lian, J. Z., Sai, N., Campos, L. C., Fisher, R. P., Linden, K. G., & Cucurachi, S. (2024). Exploring the implementation feasibility of the sol-char sanitation system using machine learning and life cycle assessment. Resources, Conservation and Recycling, 209, 107784. https://doi.org/https://doi.org/10.1016/j.resconrec.2024.107784
Liu, Ying, Li, S., Yu, C., & Lv, M. (2024). Research on green supply chain finance risk identification based on two-stage deep learning. Operations Research Perspectives, 13, 100311. https://doi.org/https://doi.org/10.1016/j.orp.2024.100311
Liu, Yiting, Baals, L. J., Osterrieder, J., & Hadji-Misheva, B. (2024). Leveraging network topology for credit risk assessment in P2P lending: A comparative study under the lens of machine learning. Expert Systems with Applications, 252, 124100. https://doi.org/https://doi.org/10.1016/j.eswa.2024.124100
Lu, Q., Fu, C., Nan, K., Fang, Y., Xu, J., Liu, J., Bellotti, A. G., & Lee, B. G. (2023). Chinese corporate fraud risk assessment with machine learning. Intelligent Systems with Applications, 20, 200294. https://doi.org/https://doi.org/10.1016/j.iswa.2023.200294
Lu, Z., Li, H., & Wu, J. (2024). Exploring the impact of financial literacy on predicting credit default among farmers: An analysis using a hybrid machine learning model. Borsa Istanbul Review, 24(2), 352–362. https://doi.org/https://doi.org/10.1016/j.bir.2024.01.006
Machado, M. R., & Karray, S. (2022). Applying hybrid machine learning algorithms to assess customer risk-adjusted revenue in the financial industry. Electronic Commerce Research and Applications, 56, 101202. https://doi.org/https://doi.org/10.1016/j.elerap.2022.101202
Mahalakshmi, V., Kulkarni, N., Pradeep Kumar, K. V, Suresh Kumar, K., Nidhi Sree, D., & Durga, S. (2022). The Role of implementing Artificial Intelligence and Machine Learning Technologies in the financial services Industry for creating Competitive Intelligence. Materials Today: Proceedings, 56, 2252–2255. https://doi.org/https://doi.org/10.1016/j.matpr.2021.11.577
Motie, S., & Raahemi, B. (2024). Financial fraud detection using graph neural networks: A systematic review. Expert Systems with Applications, 240, 122156. https://doi.org/https://doi.org/10.1016/j.eswa.2023.122156
Murugan, M. S., & T, S. K. (2023). Large-scale data-driven financial risk management & analysis using machine learning strategies. Measurement: Sensors, 27, 100756. https://doi.org/https://doi.org/10.1016/j.measen.2023.100756
Pattnaik, D., Ray, S., & Raman, R. (2024). Applications of artificial intelligence and machine learning in the financial services industry: A bibliometric review. Heliyon, 10(1), e23492. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e23492
Peng, Y., & de Moraes Souza, J. G. (2024). Chaos, overfitting and equilibrium: To what extent can machine learning beat the financial market? International Review of Financial Analysis, 95, 103474. https://doi.org/https://doi.org/10.1016/j.irfa.2024.103474
Qu, X. (2023). Analysis of Credit Risk Assessment Model for Financial Data Based on Intelligent Optimization Algorithm. Procedia Computer Science, 228, 421–428. https://doi.org/https://doi.org/10.1016/j.procs.2023.11.048
Rahman, M. J., & Zhu, H. (2024). Detecting accounting fraud in family firms: Evidence from machine learning approaches. Advances in Accounting, 64, 100722. https://doi.org/https://doi.org/10.1016/j.adiac.2023.100722
Shao, F. (2022). New energy industry financial technology based on machine learning to help rural revitalization. Energy Reports, 8, 13970–13978. https://doi.org/https://doi.org/10.1016/j.egyr.2022.10.001
Singh, V., Chen, S.-S., Singhania, M., Nanavati, B., kumar kar, A., & Gupta, A. (2022). How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda. International Journal of Information Management Data Insights, 2(2), 100094. https://doi.org/https://doi.org/10.1016/j.jjimei.2022.100094
Song, L., Li, H., Tan, Y., Li, Z., & Shang, X. (2024). Enhancing Enterprise Credit Risk Assessment with Cascaded Multi-level Graph Representation Learning. Neural Networks, 169, 475–484. https://doi.org/https://doi.org/10.1016/j.neunet.2023.10.050
Sugiyono. (2015). Metode Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D. Alfabeta.
Tang, P., Tang, T., & Lu, C. (2024). Predicting systemic financial risk with interpretable machine learning. The North American Journal of Economics and Finance, 71, 102088. https://doi.org/https://doi.org/10.1016/j.najef.2024.102088
Tang, P., Xu, W., & Wang, H. (2024). Network-Based prediction of financial cross-sector risk spillover in China: A deep learning approach. The North American Journal of Economics and Finance, 72, 102151. https://doi.org/https://doi.org/10.1016/j.najef.2024.102151
Tsay, B.-Y., Campbell, J. E., Ariail, D. L., Miller, S. K., & Shannon Shumate, L. (2023). Improving introductory financial accounting learning and retention through course redesign. Journal of Accounting Education, 62, 100816. https://doi.org/https://doi.org/10.1016/j.jaccedu.2022.100816
Viola, F., Bustamante, M., Bolger, A., Engvall, J., & Ebbers, T. (2024). Diastolic function assessment with four-dimensional flow cardiovascular magnetic resonance using automatic deep learning E/A ratio analysis. Journal of Cardiovascular Magnetic Resonance, 26(1), 101042. https://doi.org/https://doi.org/10.1016/j.jocmr.2024.101042
Wang, J., Jiang, C., Zhou, L., & Wang, Z. (2024). Assessing financial distress of SMEs through event propagation: An adaptive interpretable graph contrastive learning model. Decision Support Systems, 180, 114195. https://doi.org/https://doi.org/10.1016/j.dss.2024.114195
Wang, X., Guo, J., Luo, X., & Yu, H. (2024). DyHDGE: Dynamic Heterogeneous Transaction Graph Embedding for Safety-Centric Fraud Detection in Financial Scenarios. Journal of Safety Science and Resilience. https://doi.org/https://doi.org/10.1016/j.jnlssr.2024.05.005
Wang, Y. (2024). Abnormal behavior identification of enterprise cloud platform financial system based on artificial neural network. Computers and Electrical Engineering, 115, 109110. https://doi.org/https://doi.org/10.1016/j.compeleceng.2024.109110
DOI: http://dx.doi.org/10.26737/jetl.v9i1.5911
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Published by:
Institute of Managing and Publishing of Scientific Journals STKIP Singkawang
Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) Singkawang
Address : STKIP Singkawang, Jalan STKIP - Kelurahan Naram Singkawang, Kalimantan Barat, INDONESIA, 79251
No. Telp. : +62562 420 0344
No. Fax. : +62562 420 0584
JETL (Journal of Education, Teaching, and Learning)
e-ISSN : 2477-8478
p-ISSN : 2477-5924
Editor in Chief Contact: [email protected] / Wa: +6282142072788
Publisher Contact: [email protected] / Wa: +6282142072788
Management Tools
JETL Indexed by:
JETL (Journal of Education, Teaching, and Learning) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.