Determination of Wavelength of He-Ne Laser and Diode Laser Using Single Slit Diffraction Method

Sri Purwaningsih, Hebat Shidow Falah, Neneng Lestari, Dwi Sartikasari, Edi Yuversa

Abstract


This research aims to investigate/determine the value of the laser wavelength produced by He-Ne lasers and Diode lasers using the concept of diffraction at a single slit. The gaps used consist of three types of gaps which have gaps with a width of 0.12 mm, 0.24 mm, and 0.48 mm. Experimental results show that the wavelength of He-Ne laser light ranges from 640 nm to 646 nm. Meanwhile, the wavelength of He-Ne laser light ranges from 640 nm to 686.67 nm. Based on the results obtained, it can be concluded that it is proven that the wavelength calculated using the single slit diffraction method is in the range of values for lasers that emit red light.

Keywords


Diffraction; Single Slit Experiment, He-Ne Laser; Diode Laser

Full Text:

PDF (English)

References


Yoon, J. W., Kim, Y. G., Choi, I. W., Sung, J. H., Lee, H. W., Lee, S. K., & Nam, C. H. (2021). Realization of laser intensity over 10 23 W/cm 2. Optica, 8(5), 630-635.

Collini, M., D’Alfonso, L., & Chirico, G. (2016). Hands-on Fourier analysis by means of far-field diffraction. European Journal of Physics, 37(6), 065701.

Gates-Rector, S., & Blanton, T. (2019). The powder diffraction file: a quality materials characterization database. Powder Diffraction, 34(4), 352-360.

Rivera-Ortega, U., & Pico-Gonzalez, B. (2015). Wavelength estimation by using the Airy disk from a diffraction pattern with didactic purposes. Physics Education, 51(1), 015012.

Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., ... & Abrahams, J. P. (2019). 3D electron diffraction: the nanocrystallography revolution. ACS Central Science, 5(8), 1315-1329.

Nikolic, D., & Nesic, L. (2011). Verification of the uncertainty principle by using diffraction of light waves. European journal of physics, 32(2), 467.

Passarella, S., Casamassima, E., Molinari, S., Pastore, D., Quagliariello, E., Catalano, I. M., & Cingolani, A. (1984). Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium‐neon laser. FEBS letters, 175(1), 95-99.

Van Breugel, H. H., & Bär, P. D. (1992). Power density and exposure time of He‐Ne laser irradiation are more important than total energy dose in photo‐biomodulation of human fibroblasts in vitro. Lasers in surgery and medicine, 12(5), 528-537.

Hawkins, D. H., & Abrahamse, H. (2006). The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium‐neon laser irradiation. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 38(1), 74-83.

Bensadoun, R. J., Franquin, J. C., Ciais, G., Darcourt, V., Schubert, M. M., Viot, M., ... & Demard, F. (1999). Low-energy He/Ne laser in the prevention of radiation-induced mucositis: A multicenter phase III randomized study in patients with head and neck cancer. Supportive care in cancer, 7, 244-252.

Lyons, R. F., Abergel, R. P., White, R. A., Dwyer, R. M., Castel, J. C., & Uitto, J. (1987). Biostimulation of wound healing in vivo by a helium-neon laser. Annals of plastic surgery, 18(1), 47-50.

Hu, W. P., Wang, J. J., Yu, C. L., Lan, C. C. E., Chen, G. S., & Yu, H. S. (2007). Helium–neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. Journal of Investigative Dermatology, 127(8), 2048-2057.

Roberts III, T. L., & Yokoo, K. M. (1998). In pursuit of optimal periorbital rejuvenation: laser resurfacing with or without blepharoplasty and brow lift. Aesthetic Surgery Journal, 18(5), 321-332.

Leech, P. W. (2014). Laser surface melting of a complex high alloy steel. Materials & Design (1980-2015), 54, 539-543.

Ahmadi-Pidani, R., Shoja-Razavi, R., Mozafarinia, R., & Jamali, H. (2014). Improving the hot corrosion resistance of plasma sprayed ceria–yttria stabilized zirconia thermal barrier coatings by laser surface treatment. Materials & Design, 57, 336-341.

Nair, A. M., Muvvala, G., & Nath, A. K. (2019). A study on in-situ synthesis of TiCN metal matrix composite coating on Ti–6Al–4V by laser surface alloying process. Journal of Alloys and Compounds, 810, 151901.

Wang, Z., Zhang, Q., Bagheri, R., Guo, P., Yao, Y., Yang, L., & Song, Z. (2019). Influence of laser surface remelting on microstructure and degradation mechanism in simulated body fluid of Zn-0.5 Zr alloy. Journal of Materials Science & Technology, 35(11), 2705-2713.

Soleimanipour, Z., Baghshahi, S., & Shoja-razavi, R. (2017). Improving the thermal shock resistance of thermal barrier coatings through formation of an in situ YSZ/Al 2 O 3 composite via laser cladding. Journal of Materials Engineering and Performance, 26, 1890-1899.

He, B., Zhang, L., Zhu, Q., Wang, J., Yun, X., Luo, J., & Chen, Z. (2020). Effect of solution treated 316L layer fabricated by laser cladding on wear and corrosive wear resistance. Optics & Laser Technology, 121, 105788.

Zhu, L., Xue, P., Lan, Q., Meng, G., Ren, Y., Yang, Z., ... & Liu, Z. (2021). Recent research and development status of laser cladding: A review. Optics & Laser Technology, 138, 106915.

Whitten, J. E. (2001). Blue diode lasers: new opportunities in chemical education. Journal of Chemical Education, 78(8), 1096.

Pasley, J., Andrianaki, G., Baroutsos, A., Batani, D., Benis, E. P., Ciardi, A., ... & Tatarakis, M. (2020). Innovative education and training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser matter interactions and high energy density physics: experimental diagnostics and simulations. High Power Laser Science and Engineering, 8, e5.

Pasley, J., Andrianaki, G., Baroutsos, A., Batani, D., Benis, E. P., Borghesi, M., ... & Tatarakis, M. (2019). Innovative Education and Training in high power laser plasmas (PowerLaPs) for plasma physics, high power laser–matter interactions and high energy density physics–theory and experiments. High Power Laser Science and Engineering, 7, e23.

Senderakova, D., Strba, A., & Mesaros, V. (2008, November). Laser diode module in optical education. In 16th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics (Vol. 7141, pp. 444-450). SPIE.

Keleberda, I. N., Shulika, A. V., Sokol, V. V., Safonov, I. M., Sakalo, T. S., Ivanov, P. S., ... & Lesna, N. S. (2004, July). Web-oriented interactive environment for distance education in study of semiconductor lasers. In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments II (Vol. 5484, pp. 561-567). SPIE.

Sabaratnam, A., & Symons, C. (2001, November). Laser entertainment and light shows in education. In Education and Training in Optics and Photonics (p. IATLII254). Optica Publishing Group.

Fukuda, M., & Mura, G. (2021). Laser Diode Reliability. In Advanced Laser Diode Reliability (pp. 1-49). Elsevier.

Niebauer, T. M., Faller, J. E., Godwin, H. M., Hall, J. L., & Barger, R. L. (1988). Frequency stability measurements on polarization-stabilized He–Ne lasers. Applied optics, 27(7), 1285-1289.

Cheng, W. Y., Chen, Y. S., Cheng, C. Y., Shy, J. T., & Lin, T. (2000). Frequency stabilization and measurements of 543 nm HeNe lasers. Optical and Quantum Electronics, 32, 299-311.

Rowley, W. R. C. (1990). The performance of a longitudinal Zeeman-stabilised He-Ne laser (633 nm) with thermal modulation and control. Measurement Science and Technology, 1(4), 348.

Mohagheghian, M., & Sabouri, S. G. (2018). Laser wavelength measurement based on a digital micromirror device. IEEE photonics technology letters, 30(13), 1186-1189.

Astilean, S., Lalanne, P., Chavel, P., Cambril, E., & Launois, H. (1998). High-efficiency subwavelength diffractive element patterned in a high-refractive-index material for 633?? nm. Optics letters, 23(7), 552-554.

Ara, M. M., Dehghani, Z., Sahraei, R., Daneshfar, A., Javadi, Z., & Divsar, F. (2012). Diffraction patterns and nonlinear optical properties of gold nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 113(5), 366-372.

Lacraz, A., Theodosiou, A., & Kalli, K. (2016). Femtosecond laser inscribed Bragg grating arrays in long lengths of polymer optical fibres; a route to practical sensing with POF. Electronics Letters, 52(19), 1626-1627.

Liehr, S., Burgmeier, J., Krebber, K., & Schade, W. (2013). Femtosecond laser structuring of polymer optical fibers for backscatter sensing. Journal of lightwave technology, 31(9), 1418-1425.

Jagdeo, J., Nguyen, J. K., Ho, D., Wang, E. B., Austin, E., Mamalis, A., ... & Isseroff, R. R. (2020). Safety of light emitting diode‐red light on human skin: Two randomized controlled trials. Journal of biophotonics, 13(3), e201960014.

Li, Y., Zhang, J., Xu, Y., Han, Y., Jiang, B., Huang, L., ... & Qin, C. (2016). The histopathological investigation of red and blue light emitting diode on treating skin wounds in Japanese big-ear white rabbit. PloS one, 11(6), e0157898.




DOI: http://dx.doi.org/10.26737/jipf.v9i1.4835

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Sri Purwaningsih, Hebat Shidow Falah, Neneng Lestari, Dwi Sartikasari, Edi Yuversa

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher

Institute of Managing and Publishing of Scientific Journals
STKIP Singkawang

Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia

Website: http://journal.stkipsingkawang.ac.id/index.php/JIPF
Email: [email protected]

 


JIPF Indexed by:

 

Copyright (c) JIPF (Jurnal Ilmu Pendidikan Fisika)

ISSN 2477-8451 (Online) and ISSN 2477-5959 (Print)