Four-Tier Test Model to Measure Prospective Physics Teacher Students’ Multiple Representation Ability on Electricity Topic
Abstract
Keywords
Full Text:
PDF (English)References
Hubber, P., & Tytler, R. (2017). Enacting a representation construction approach to teaching and learning astronomy. In Multiple representations in physics education (pp. 139-161). Springer, Cham.
Waldrip, B., Prain, V., & Carolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in science education, 40(1): 65-80.
Nieminen, P., Savinainen, A., & Viiri, J. (2017). Learning about forces using multiple representations. In Multiple Representations in Physics Education (pp. 163-182). Springer, Cham.
Ornek, F., Robinson, W. R., & Haugan, M. P. (2008). What Makes Physics Difficult?. International Journal of Environmental and Science Education, 3(1): 30-34.
Rahmawati, R., Rustaman, N. Y., Hamidah, I., & Rusdiana, D. (2018). The Development and Validation of Conceptual Knowledge Test to Evaluate Conceptual Knowledge of Physics Prospective Teachers on Electricity and Magnetism Topic. Jurnal Pendidikan IPA Indonesia, 7(4): 283-490.
Gurcay, D., & Gulbas, E. (2015). Development of three-tier heat, temperature and internal energy diagnostic test. Research in Science & Technological Education, 33(2): 197-217.
Beichner, R. J. (1994). Testing student interpretation of kinematics graphs. American journal of Physics, 62(8): 750-762.
Wiser, M. (1986). The Differentiation of Heat and Temperature: An Evaluation of the Effect of Microcomputer Teaching on Students' Misconceptions. Technical Report 87-5.
Baser, M., & Geban, Ö. (2007). Effectiveness of conceptual change instruction on understanding of heat and temperature concepts. Research in science & technological education, 25(1): 115-133.
Başer, M., & Geban, Ö. (2007). Effect of instruction based on conceptual change activities on students’ understanding of static electricity concepts. Research in Science & Technological Education, 25(2): 243-267.
Tan, K. C. D., Goh, N. K., Chia, L. S., & Treagust, D. F. (2002). Development and application of a two‐tier multiple choice diagnostic instrument to assess high school students' understanding of inorganic chemistry qualitative analysis. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 39(4): 283-301.
Tan, K. C. D., Taber, K. S., Goh, N. K., & Chia, L. S. (2005). The ionisation energy diagnostic instrument: a two-tier multiple-choice instrument to determine high school students’ understanding of ionisation energy. Chemistry Education Research and Practice, 6(4): 180-197.
Arslan, H. O., Cigdemoglu, C., & Moseley, C. (2012). A three-tier diagnostic test to assess pre-service teachers’ misconceptions about global warming, greenhouse effect, ozone layer depletion, and acid rain. International journal of science education, 34(11): 1667-1686.
Caleon, I., & Subramaniam, R. (2010). Development and application of a three‐tier diagnostic test to assess secondary students’ understanding of waves. International journal of science education, 32(7): 939-961.
Romine, W. L., Schaffer, D. L., & Barrow, L. (2015). Development and application of a novel Rasch-based methodology for evaluating multi-tiered assessment instruments: Validation and utilization of an undergraduate diagnostic test of the water cycle. International Journal of Science Education, 37(16): 2740-2768.
Peşman, H., & Eryılmaz, A. (2010). Development of a three-tier test to assess misconceptions about simple electric circuits. The Journal of educational research, 103(3): 208-222.
Shipstone, D. (1988). Pupils' understanding of simple electrical circuits. Some implications for instruction. Physics education, 23(2): 92.
Shipstone, D. M. (1984). A study of children's understanding of electricity in simple DC circuits. European journal of science education, 6(2): 185-198.
Arnold, M., & Millar, R. (1987). Being constructive: An alternative approach to the teaching of introductory ideas in electricity. International Journal of Science Education, 9(5): 553-563.
Osborne, R. J., & Cosgrove, M. M. (1983). Children's conceptions of the changes of state of water. Journal of research in Science Teaching, 20(9): 825-838.
Osborne, R. (1983). Towards modifying children's ideas about electric current. Research in Science & Technological Education, 1(1): 73-82.
Hekkenberg, A., Lemmer, M., & Dekkers, P. (2015). An analysis of teachers' concept confusion concerning electric and magnetic fields. African Journal of Research in Mathematics, Science and Technology Education, 19(1): 34-44.
Tarciso Borges, A., & Gilbert, J. K. (1999). Mental models of electricity. International journal of science education, 21(1): 95-117.
Cosgrove, M. (1995). A study of science‐in‐the‐making as students generate an analogy for electricity. International journal of science education, 17(3): 295-310.
Cohen, R., Eylon, B., & Ganiel, U. (1983). Potential difference and current in simple electric circuits: A study of students’ concepts. American Journal of Physics, 51(5): 407-412.
Paatz, R., Ryder, J., Schwedes, H., & Scott, P. (2004). A case study analysing the process of analogy‐based learning in a teaching unit about simple electric circuits. International Journal of Science Education, 26(9): 1065-1081.
Psillos, D., Koumaras, P., & Valassiades, O. (1987). Pupils’ representations of electric current before, during and after instruction on DC circuits. Research in Science & Technological Education, 5(2): 185-199.
Engelhardt, P. V., & Beichner, R. J. (2004). Students’ understanding of direct current resistive electrical circuits. American journal of physics, 72(1): 98-115.
Finkelstein, N. (2005). Learning physics in context: A study of student learning about electricity and magnetism. International Journal of Science Education, 27(10): 1187-1209.
Zacharia, Z. C., & De Jong, T. (2014). The effects on students’ conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives-oriented curriculum. Cognition and instruction, 32(2): 101-158.
Stocklmayer, S. M., & Treagust, D. F. (1996). Images of electricity: How do novices and experts model electric current?. International Journal of Science Education, 18(2): 163-178.
Heller, P. M., & Finley, F. N. (1992). Variable uses of alternative conceptions: A case study in current electricity. Journal of Research in Science Teaching, 29(3): 259-275.
Heywood, D., & Parker, J. (1997). Confronting the analogy: primary teachers exploring the usefulness of analogies in the teaching and learning of electricity. International Journal of Science Education, 19(8): 869-885.
Retnawati, H. (2016). Validitas, Reliabilitas, & Karakteristik Butir (Panduan untuk Peneliti, Mahasiswa, dan Psikometrian). Yogyakarta: Parama Publishing.
Hambleton, R. K., Swaminatan, H. & Rogers, H. J. (1991). Fundamentals of Item Respons Theory. United States of America: Sage Publication, Inc.
Demars, C. (2010). Item Respons Theory: Understanding Statistics Measurement. United States of America: Oxford University Press.
Hambleton, R. K., & Swaminatan, H. (1985). Item Response Theory: Principles and Applications. New York: Springer Science+Business Media, LLC.
Kuo, C. Y., Wu, H. K., Jen, T. H., & Hsu, Y. S. (2015). Development and validation of a multimedia-based assessment of scientific inquiry abilities. International Journal of Science Education, 37(14): 2326-2357.
Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel psychology, 28(4): 563-575.
Wilson, F. R., Pan, W., & Schumsky, D. A. (2012). Recalculation of the critical values for Lawshe’s content validity ratio. Measurement and evaluation in counseling and development, 45(3): 197-210.
Sumintono, B., & Widhiarso, W. (2015). Aplikasi Pemodelan Rasch pada Assessment Pendidikan. Cimahi: Penerbit Trim Komunikasi.
Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch Analysis in the Human Sciences. New York, London: Springer.
Boone, W. J., & Scantlebury, K. (2006). The role of Rasch analysis when conducting science education research utilizing multiple‐choice tests. Science Education, 90(2): 253-269.
Davidowitz, B., & Potgieter, M. (2016). Use of the Rasch measurement model to explore the relationship between content knowledge and topic-specific pedagogical content knowledge for organic chemistry. International Journal of Science Education, 38(9): 1483-1503.
Anderson, L. W., & Krathwohl, D. R. (2001) A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. New York: David McKay Company, Inc.
Marzano, R. J. (2006). Classroom Assessment & Grading that Work. Alexandria, Virginia: Association for Supervision and Curriculum Development.
Wilson, M. (2005). Constructing Measures: An Item Response Modeling Approach. Mahwah, New Jersey, London: Lawrence Erlbaum Associates, Publishers.
Bansilal, S. (2015). A Rasch analysis of a Grade 12 test written by mathematics teachers. South African Journal of Science, 111(5-6): 1-9.
Gronlund, N. E. (1985). Measurement and evaluation in teaching. In Measurement and evaluation in teaching (pp. xv-540).
Thorndike, R. L. (1971). Educational Measurement, Second Edi. United State of America: American Council on Education.
Linacre, J. M. (2002). Optimizing rating scale category effectiveness. Journal of applied measurement, 3(1): 85-106.
Linacre, J. M. (2010). Predicting responses from Rasch measures. Journal of Applied Measurement, 11(1): 1.
Bond, T. G., & Fox, C. M. (2-15). Applying the Rasch Model: Fundamental Measurement in the Human Science, Third Edit. New York and London: Routledge Taylor & Francis Group.
Krishnan, S., & Idris, N. (2014). Investigating reliability and validity for the construct of inferential statistics. International Journal of Learning, Teaching and Educational Research, 4(1): 51-60.
Sumintono, B., &Widhiarso, W. (2013). Aplikasi Model Rasch untuk Penelitian Ilmu-ilmu Sosial. Cimahi: Trim Komunikasi Publishing House.
Sumintono, B. (2018). Rasch Model Measurement as Tools in Assessment for, ResearchGate, Kuala Lumpur.
DOI: http://dx.doi.org/10.26737/jipf.v7i3.3066
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Rahmawati Rahmawati, Widiasih Widiasih, Nasrah Nasrah, A. Muafiah Nur
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Publisher
Institute of Managing and Publishing of Scientific Journals
STKIP Singkawang
Jl. STKIP, Kelurahan Naram, Kecamatan Singkawang Utara, Kota Singkawang, Kalimantan Barat, Indonesia
Website: http://journal.stkipsingkawang.ac.id/index.php/JIPF
Email: [email protected]
JIPF Indexed by:
Copyright (c) JIPF (Jurnal Ilmu Pendidikan Fisika)